The use of the compensated load method for solving the problem of the interaction of a plane harmonic wave with a flat plate in an elastic soil medium under various boundary conditions
UDC
539.3EDN
WHIFJSDOI:
10.31429/vestnik-22-2-31-44Abstract
This paper investigates the compensated load method for solving the problem of the interaction of a plane harmonic wave with a flat plate in an elastic soil medium. The main objective of this study is to determine the displacements at the boundary between the obstacle and the soil. To solve the problem of the motion of a homogeneous obstacle fixed in any way other than hinge support, an approach based on satisfying boundary conditions using compensating loads is employed. Surface influence functions are determined, which subsequently allow for the characterization of the reflected and transmitted waves passing through the obstacle. Then, based on the boundary conditions, the compensated loads are determined, enabling the calculation of the plate displacements.
Keywords:
Kirchhoff plate, compensating loads, influence function, harmonic excitationFunding information
The study did not have sponsorship.
References
- Коренева, Е.Б., Метод компенсирующих нагрузок для решения задач о циклически симметричном изгибе анизотропных пластин, контактирующих с упругим основанием. Строительная механика инженерных конструкций и сооружений, 2021, т. 17, № 2, с. 99–111. [Koreneva, E.B., The method of compensating loads for solving of problems of cyclic symmetrical flexure of anisotropic plates, resting on an elastic subgrade. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy = Structural Mechanics of Engineering Constructions and Buildings, 2021, vol. 17, no. 2, pp. 99–111. (in Russian)] DOI: 10.22363/1815-5235-2021-17-2-99-111
- Коренева, Е.Б., Метод компенсирующих нагрузок для решения задач об анизотропных средах. Международный журнал по расчету гражданских и строительных конструкций, 2018, т. 14, № 1, с. 71–77. [Koreneva, E.B., Method of compensating loads for solving of anisotropic medium problems. Mezhdunarodnyy zhurnal po raschetu grazhdanskikh i stroitel'nykh konstruktsiy = Internaional Journal for Computational Civil and Structural Engineering, 2018, vol. 14, no. 1, pp. 71–77. (in Russian)] DOI: 10.22337/2587-9618-2018-14-1-71-77
- Локтева, Н.А., Иванов, С.И., Шумопоглощающие свойства однородной пластины с произвольными граничными условиями под воздействием плоской гармонической волны в акустической среде. Труды МАИ, 2021, № 117. [Lokteva, N.A., Ivanov, S.I., Noise-absorbing properties of a homogeneous plate with arbitrary boundary conditions under the impact of a plane acoustic wave in acoustic medium. Trudy MAI, 2021, no. 117. (in Russian)] DOI: 10.34759/trd-2021-117-05
- Локтева, Н.А., Сердюк, Д.О., Скопинцев, П.Д., Метод компенсирующих нагрузок для исследования нестационарных возмущений в анизотропных цилиндрических оболочках с локальными шарнирными опорами. Проблемы безопасности на транспорте. Материалы XI международной научно-практической конференции. Ч. 2. Гомель, БелГУТ, 2022, с. 207–207. [Lokteva, N.A., Serdyuk, D.O., Skopintsev, P.D., The Method of Compensating Loads for Studying Non-Stationary Disturbances in Anisotropic Cylindrical Shells with Local Hinged Supports. Problemy bezopasnosti na transporte. Materialy XI mezhdunarodnoy nauchno-prakticheskoy konferentsii. Ch. 2 = Problems of Safety in Transport. Materials of the XI International Scientific and Practical Conference, Pt. 2. Gomel, BelSUT, 2022, pp. 207–207. (in Russian)]
- Fedotenkov, G.V., Tarlakovsky, D.V., and Vahterova, Y.A., Identification of non-stationary load upon Timoshenko beam. Lobachevskii J. Math., 2019, vol. 40, no. 4, pp. 439–447. DOI: 10.1134/S1995080219040061
- Serdyuk, A.O., Serdyuk, D.O., Fedotenkov, G.V., Hein, T.Z., Green's function for an unbounded anisotropic Kirchhoff–Love plate. J. Balk. Tribol. Assoc., 2021, vol. 27, no. 5, pp. 747–761.
- Сердюк, А.О., Сердюк, Д.О., Федотенков, Г.В., Нестационарная функция прогиба для неограниченной анизотропной пластины. Вестник Самарского государственного технического университета. Серия "Физикоматематические науки", 2021, vol. 25, no. 1, pp. 111–126. [Serdyuk, A.O., Serdyuk, D.O., Fedotenkov, G.V., Unsteady Deflection Function for an Unbounded Anisotropic Plate. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya "Fizikomatematicheskie nauki" = Bull. of Samara State Technical University. Series: Physical and Mathematical Sciences, 2021, vol. 25, no. 1, pp. 111–126. (in Russian)]
- Горшков, А.Г., Медведский, А.Л., Рабинский, Л.Н., Тарлаковский, Д.В., Волны в сплошных средах. Москва, Физматлит, 2004. [Gorshkov, A.G., Medvedsky, A.L., Rabinsky, L.N., Tarlakovsky, D.V., Volny v sploshnykh sredakh = Waves in solid media. Moscow, Fizmatlit, 2004. (in Russian)]
- Sha, M., Rabinskiy, L.N., Orekhov, A.A., Impact of raindrop erosion on structural components. Russ. Eng. Res., 2023, vol. 43, no. 7, pp. 834–837. DOI: 10.3103/S1068798X23070195
- Vo, Van Dai, Lokteva, N.A., Nguyen, Minh Tuan, Nguyen, Duong Phung, Nguyen, Thi Cam Nhung, Problem on the interaction between plane harmonic waves and a uniform steel plate in soil elastic envionment. HaUI Journal ofScience and Technology, 2024, vol. 60, iss. 8, pp. 73–79. DOI: 10.57001/huih5804.2024.267
- Kalinchuk, V.V., Fedotenkov, G.V., Mitin, A.Y., Three-dimensional non-stationary motion of Timoshenko-type circular cylindrical shell. Lobachevskii Journal of Mathematics, 2019, vol. 40, no. 3, pp. 311–320. DOI: 10.1134/S1995080219030107
- Слепян, Л.И., Яковлев, Ю.С., Интегральные преобразования в нестационарных задачах механики. Ленинград, Судостроение, 1980. [Slepyan, L.I., Yakovlev, Yu.S., Integral Transforms in Unsteady Problems of Mechanics. Leningrad, Sudostroenie, 1980. (in Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Во Ван Дай, Локтева Н.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.