Some problems of identification of physical and mechanical characteristics of inhomogeneous bodies under thermal loading

Authors

  • Nesterov S.A. Southern Mathematical Institute, a branch of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Russian Federation ORCID iD 0000-0003-3780-5104

UDC

539.3, 563.24

EDN

HVZNRK

DOI:

10.31429/vestnik-22-3-13-23

Abstract

Research in the field of inverse problems of identification of variable physical and mechanical characteristics is very relevant due to the widespread use of functionally graded materials in engineering. However, the technological process of their manufacture, due to its multi-stage nature, does not allow to accurately predicting the properties of the finished product. A class of coefficient inverse problems is considered in which the reconstruction of variable physical and mechanical characteristics of bodies under the action of thermal stationary loads is carried out using information on the temperature and displacement fields measured on the part of the boundary free from loading. As examples, the problems of identification of one-dimensional characteristics are studied: 1) the thermal conductivity coefficient of a rod; 2) the compliance coefficient of a thermoelastic rod; 3) the thermal conductivity coefficient of an elongated rectangle. The solution to the first problem is constructed by approximating the derivative of the temperature on the segment of additional information removal using the Galerkin projection method and extending the definition of the derivative quadratically in the remaining part of the rod. The solutions of the second and third problems are based on the algebraization of physical fields and narrowing the search class to polynomial functions whose coefficients are found from the solution of linear algebraic systems. The results of computational experiments on the reconstruction of variable physical and mechanical characteristics of a rod and an elongated rectangle are presented. It is found that narrowing the search area significantly increases the efficiency of the proposed approaches in restoring functions from the same class.

Keywords:

rod, rectangle, functionally graded materials, thermal conductivity coefficient, Young's modulus, compliance coefficient, coefficient inverse problem, identification, Galerkin method, weak statement

Funding information

The study did not have sponsorship.

Author info

  • Sergey A. Nesterov

    д-р физ.-мат. наук, ведущий научный сотрудник отдела дифференциальных уравнений Южного математического института – филиала ВНЦ РАН

References

  1. Gupta, A., Talha, M., Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 2015, vol. 79, pp. 1–14. DOI: 10.1016/j.paerosci.2015.07.001
  2. Mohammadi, M., Rajabi, M., Ghadiri, M. Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications. Processing and Application of Ceramics, 2021, vol. 15, iss. 4, pp. 319–343. DOI: 10.2298/PAC2104319M
  3. Фомин, В.М., Маликов, А.Г., Голышев, А.А., Булина, Н.В., Анчаров, А.И., Витошкин, И.Е., Брусенцева, Т.А., Филиппов, А.А., Создание функционально-градиентного материала методом аддитивного лазерного сплавления. Прикладная механика и техническая физика, 2020, т. 61, №5(363), с. 224–234. [Fomin, V.M., Malikov, A.G., Golyshev, A.A., Bulina, N.V., Ancharov, A.I., Vitoshkin, I.E., Brusentseva, T.A., Filippov, A.A., Creation of a functionally gradient material by the elective laser melting method. Prikladnaya mekhanika i tekhnicheskaya fizika = Journal of Applied Mechanics and Technical Physics, 2020, vol. 61, no. 5, pp. 878–887. DOI: 10.1134/S0021894420050235] DOI: 10.15372/PMTF20200523
  4. Ghanavati, R., Naffakh–Moosavy, H., Additive Manufacturing of Functionally Graded Metallic Materials: A Review of Experimental and Numerical Studies. Journal of Materials Research and Technology, 2021, no. 13, pp. 1628–1664. DOI: 10.1016/j.jmrt.2021.05.022
  5. Рудской, А.И., Попович, А.А., Функционально–градиентные материалы и аддитивные технологии их получения. Санкт-Петербург, Политех-пресс, 2022. [Rudskoy, A.I., Popovich, A.A., Funktsional'no–gradiyentnyye materialy i additivnyye tekhnologii ikh polucheniya = Functionally graded materials and additive technologies for their production, Sankt-Peterburg, Politech-press, 2022. (in Russian)]
  6. Yadav, S., Liu, S., Singh, R.K., Sharma, A.K., Rawat, P., A state-of-art review on functionally graded materials (FGMs) manufactured by 3D printing techniques: Advantages, existing challenges, and future scope. Journal of Manufacturing Processes, 2024, vol. 131, pp. 2051–2072. DOI: 10.1016/j.jmapro.2024.10.026
  7. Karimzadeh, M., Basvoju, D., Vakanski, A., Charit, I., Xu, F., Zhang, X., Machine learning for additive manufacturing of functionally graded materials. Materials, 2024, vol. 17, art. 3673. DOI: 10.3390/ma17153673
  8. Sinitsa A.V., Capsoni A., Design of novel inverse analysis methodology for exact estimation of elasticity parameters in thermoelastic stress model. International Communication in Heat and Mass Transfer, 2022, vol. 135, no. 3, art. 106096. DOI: 10.1016/j.icheatmasstransfer.2022.106096
  9. Будник, С.А., Ненарокомов, А.В., Просунцов, П.В., Титов, Д.М., Идентификация математических моделей термоупругости. 1. Анализ и постановка задачи. Тепловые процессы в технике. 2017, т. 9, № 3, с. t118–125. [Budnik, S.A., Nenarokomov, A.V., Prosuntsov, P.V., Titov, D.M., Identification of mathematical models of thermoelasticity. 1. Analysis and formulation of the problem. Teplovyye protsessy v tekhnike = Thermal processes in engineering, 2017, vol. 9, no. 3, pp. 118–125. (in Russian)]
  10. Пашаев, А.М., Искендеров, А.Д., Мусаева, М.А., Метод обратных задач тепловой диагностики термоупругих конструкций. Инженерно-физический журнал, 2023, т. 96, №6, с. 1419–1428. [Pashaev, A.M., Iskenderov, A.D., Musaeva, M.A., Method of inverse problems for thermal diagnostics of thermoelastic structures. Journal of Engineering Physics and Thermophysics, 2023, vol. 96, no. 6, 1407–1415. DOI: 10.1007/s10891-023-02808-8]
  11. Chen, W.L., Chou, H.M., Yang, Y.C., An inverse problem in estimating the space – dependent thermal conductivity of a functionally graded hollow cylinder. Composites Part B: Engineering, 2013, vol. 50, pp. 112–119. DOI: 10.1016/j.compositesb.2013.02.010
  12. Ni, B., Gao, H., A deep learning approach to the inverse problem of modulus identification in elasticity. MRS Bulletin, 2021, vol. 46, pp. 19–25. DOI: 10.1557/s43577-020-00006-y
  13. Kamali, A., Sarabian, M., Laksari, K., Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio. Acta Biomaterialia, 2023, vol. 155, pp. 400–409. DOI: 10.1016/j.actbio.2022.11.024
  14. Ватульян, А.О., Нестеров, С.А., Исследование обратных задач термоупругости для неоднородных материалов. Владикавказский математический журнал, 2022, т. 24, №2, с. 75–84. [Vatulyan, A.O., Nesterov, S.A., Study of the Inverse Problems of Thermoelasticity for Inhomogeneous Materials. Siberian Mathematical Journal, 2023, vol. 64, no. 3, pp. 699–706. DOI: 10.1134/s0037446623030175] DOI: 10.46698/v3482-0047-3223-o
  15. Boumenir, A., The reconstruction of the space-dependent thermal conductivity coefficient. Numer. Algor., 2024, vol. 97, pp. 801–817. DOI: 10.1007/s11075-023-01724-5
  16. Lukasievicz, S.A., Babaei, R., Qian, R.E., Detection of material properties in a layered body by means of thermal effects. Journal of Thermal Stresses, 2003, vol. 26, no. 1, pp. 13–23. DOI: 10.1080/713855763
  17. Infante, J.A., Molina–Rodríguez, M., Ramos, Á.M., On the identification of a thermal expansion coefficient. Inverse Problems in Science and Engineering, 2015, vol. 23, no. 8, pp. 1405–1424. DOI: 10.1080/17415977.2015.1032274
  18. Dulikravich, G.S., Reddy, S.R., Pasqualette, M.A., Colaco, M.J., Orlande, H.R., Coverston, J., Inverse determination of spatially varying material coefficients in solid objects. Journal of Inverse and Ill-posed Problems, 2016, vol. 24, pp. 181–194. DOI: 10.1515/jiip-2015-0057
  19. Cao, K., Lesnic, D., Liu, J. Simultaneous reconstruction of space-dependent heat transfer coefficients and initial temperature. Journal of Computational and Applied Mathematics, 2020, no. 375, art. 112800. DOI: 10.1016/j.cam.2020.112800
  20. Mohebbi, F., Evans, B., Rabczuk, T., Solving direct and inverse heat conduction problems in functionally graded materials using an accurate and robust numerical method. International Journal of Thermal Sciences, 2021, vol. 159, art. 106629. DOI: 10.1016/j.ijthermalsci.2020.106629
  21. Алифанов, О.М., Будник, С.А., Ненарокомов, А.В., Нетелеев, А.В., Охапкин, А.С., Чумаков, В.А., Исследование теплофизических свойств градиентных материалов методом обратных задач. Инженерно-физический журнал, 2022, т. 95, № 4, с. 1031–1041. [Alifanov, O.M., Budnik, S.A., Nenarokomov, A.V., Netelev, A.V., Okhapkin, A.S., Chumakov, V.A., Investigation of thermophysical properties of gradient materials by the method of inverse problems. Journal of Engineering Physics and Thermophysics, 2022, vol. 95, no. 4, pp. 1015–1025. DOI: 10.1007/s10891-022-02560-5] DOI: 10.46698/v3482-0047-3223-o
  22. Diligenskaya, A., Samokish, A., Parametric identification of technological thermophysics processes based on neural network approach. J. Vibroeng., 2021, vol. 23, no. 6, pp. 1407–1417. DOI: 10.21595/jve.2021.22075
  23. Xu, W., Fu, Z., Xi, Q., Thermal conductivity identification in functionally graded materials via a machine learning strategy based on singular boundary method. Mathematics, 2022, vol. 10, art. 458. DOI: 10.3390/math10030458
  24. Ватульян, А.О., Нестеров, С.А., Решение обратной задачи об идентификации двух термомеханических характеристик функционально-градиентного стержня. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2022, т. 22, № 2, с. 180–195. [Vatulyan, A.O., Nesterov, S.A., Solution of the inverse problem of identification of two thermomechanical characteristics of a functionally graded rod. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika = Bulletin of the Saratov University. New series. Series: Mathematics. Mechanics. Computer science, 2022, vol. 22, no. 2, pp. 180–195. (in Russian) DOI: 10.18500/1816-9791-2022-22-2-180-195] DOI: 10.18500/1816-9791-2022-22-2-180-195
  25. Ватульян, А.О., Нестеров, С.А., Об особенностях идентификации переменных термомеханических характеристик функционально-градиентного прямоугольника. Вычислительная механика сплошных сред, 2023, т. 16, № 4, с. 504–516. [Vatulyan, A.O., Nesterov, S.A., On the features of identification of variable thermomechanical characteristics of a functionally graded rectangle. Vychislitel'naya mekhanika sploshnykh sred = Computational Continuum Mechanics, 2023, vol. 16, no. 4, pp. 504–516. (in Russian)] DOI: 10.7242/1999-6691/2023.16.4.42
  26. Нестеров, С.А., О различных подходах к решению коэффициентной обратной задачи теплопроводности для неоднородного стержня. Экологический вестник научных центров Черноморского экономического сотрудничества, 2024, т. 21, № 3, с. 32–44 [Nesterov, S.A., On various approaches to solving the coefficient inverse problem of heat conductivityfor a inhomogeneous rod. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2024, vol. 21, no. 3, pp. 32–44. (in Russian)] DOI: 10.31429/vestnik-21-3-32-44
  27. Нестеров, С.А., Реконструкция переменных теплофизических свойств прямоугольной области. Экологический вестник научных центров Черноморского экономического сотрудничества, 2024, т. 21, № 4, с. 45–54. [Nesterov, S.A., Reconstruction of variable thermophysical properties of a rectangular region. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2024, vol. 21, no. 4, pp. 45–54. (in Russian)] DOI: 10.31429/vestnik-21-4-45-54
  28. Нестеров, С.А., Реконструкция переменного коэффициента теплопроводности функционально-градиентного цилиндра. Инженерный вестник Дона, 2024, т. 11(119), с. 706–713. [Nesterov, S.A., Reconstruction of the variable thermal conductivity coefficient of a functionally graded cylinder. Inzhenernyj vestnik Dona = Engineering Bulletin of the Don, 2024, vol. 11(119), pp. 706–713. (in Russian)]

Downloads

Download data is not yet available.

Issue

Pages

13-23

Section

Mechanics

Dates

Submitted

July 14, 2025

Accepted

September 8, 2025

Published

September 22, 2025

How to Cite

[1]
Nesterov, S.A., Some problems of identification of physical and mechanical characteristics of inhomogeneous bodies under thermal loading. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2025, т. 22, № 3, pp. 13–23. DOI: 10.31429/vestnik-22-3-13-23

Similar Articles

1-10 of 534

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>