Effect of a convective term of the Nernst-Plank equation on the ions transfer characteristics in the synthetic membrane charged capillary
UDC
541.135.5Abstract
Within the framework of the Nernst-Plank model, a one-dimensional boundary value problem of stationary ion transfer through the charged media is set and solved with the account of a normal convective component. The problem is applied to a thin pore with charged walls pairing two solutions of different concentrations. Numerical and analytical methods of solution of a boundary value problem are given. The dependences of electrical strength in a pore and effective transfer numbers from the value of a convective component are investigated. It is shown that the Goldman's approximation can be applied to nano-size systems with some exceptions.
Keywords:
nano-, ion transfer, Goldman's approximation, transfer numberFunding information
Работа выполнена при поддержке РФФИ и Администрации Краснодарского края (06-03-96676).
References
- Никоненко В.В., Лебедев К.А., Сулейманов С.С. Влияние конвективного слагаемого в уравнении Нернста-Планка на характеристики переноса ионов через слой раствора или мембраны // Электрохимия. 2008. Т. 42. №11. С.931-941.
- Ramírez P., Mafe S., Aguilella V. M., Alcaraz A. Synthetic nanopores with fixed charges: An electrodiffusion model for ionic transport // Physical Review. 2003. Vol. 68. Р. 68-75.
- Ramírez P., Mafe S., Alcaraz A., Cervera J. Modeling of pH-Switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges // J. Phys. Chem. B 2003. Vol. 107. P. 13178-13187.
- Заболоцкий В.И., Никоненко В.И. Перенос ионов в мембранах. М.: Наука, 1996. 392 с.
- Никоненко В.В., Заболоцкий В.И., Гнусин Н.П., Лебедев К.А. Влияние переноса коионов на предельную плотность тока в мембранной системе // Электрохимия. 1985. Т. 21. №6. C. 784-790.
- Мanzanares J., Kontturi K. Encyclopedia of Electrochemistry. 2003. Vol. 2. Interfacial Kinetics and Mass Transport / Eds. Bard A.J., Stratmann M., Calvo E.J. Indianapolis: Wiley Publ. Inc.: P. 87.
- Pellicer J., Mafe S. A., Aguilella V.M. Ionic transport across porous charged membranes and the Goldman constant field assumption // Ber. Bunsenges. Phys. 1986. Chem. Vol. 90. P. 867-872.
- Schlogl R. Electrodiffusion in freier Losung and geledenen Membranen // Ztschr. Phis. Chem. 1954. Bd. 1. No 5. P. 305-339.
- Minagawa M., Tanioka A., Ramerez P., Mafe S. Amino acid transport through cation exchange membranes: effects of pH on interfacial transport // J. Colloid Interface Sci. Vol. 188. 1997. P. 176-182.
- Minagawa M., Tanioka A. Leucine transport through cation exchange membranes: effects of HCl concentration on interfacial transport // J. Colloid Interface Sci. Vol. 202. 1998. P. 149-154.
- Lakshminarayanaiah N. Equation of Membrane Biophysics. N.Y.: Acad. Press. 1984. 186 p.
- Pellicer J., Mafe S., and Aguilella V. M. Ionic transport across porous charged membranes and the Goldman constant assumption // Ber. Bunsenges. Phys. Chem. 1986. Vol. 90. P. 867-872.
- Ramírez P., Alcaraz A., Mafe S., Pellicer J. pH and supporting electrolyte concentration effects on the passive transport of cationic and anionic drugs through fixed charge membranes // J. Membr. Sci. 1999. Vol. 161. P. 143-155.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2009 Сулейманов С.С., Куриленко А.К., Лебедев К.А.
This work is licensed under a Creative Commons Attribution 4.0 International License.