Влияние конвективного слагаемого в уравнении Нернста-Планка на характеристики переноса ионов в заряженном капилляре синтетической мембраны
УДК
541.135.5Аннотация
В рамках модели Нернста-Планка решена одномерная краевая задача стационарного переноса ионов через заряженные среды с учетом нормальной конвективной составляющей. Задача рассматривается применительно к тонкой поре с заряженными стенками, соединяющей два раствора разной концентрации. Даны численный и аналитический способы решения возникающей краевой задачи. Проанализированы зависимости распределения напряжённости в поре и эффективные числа переноса от величины конвективной составляющей. Показано, что приближение Гольдмана применимо к системам с наноразмерами, однако с некоторыми исключениями.
Ключевые слова:
нано-, перенос ионов, приближение Гольдмана, число переносаИнформация о финансировании
Работа выполнена при поддержке РФФИ и Администрации Краснодарского края (06-03-96676).
Библиографические ссылки
- Никоненко В.В., Лебедев К.А., Сулейманов С.С. Влияние конвективного слагаемого в уравнении Нернста-Планка на характеристики переноса ионов через слой раствора или мембраны // Электрохимия. 2008. Т. 42. №11. С.931-941.
- Ramírez P., Mafe S., Aguilella V. M., Alcaraz A. Synthetic nanopores with fixed charges: An electrodiffusion model for ionic transport // Physical Review. 2003. Vol. 68. Р. 68-75.
- Ramírez P., Mafe S., Alcaraz A., Cervera J. Modeling of pH-Switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges // J. Phys. Chem. B 2003. Vol. 107. P. 13178-13187.
- Заболоцкий В.И., Никоненко В.И. Перенос ионов в мембранах. М.: Наука, 1996. 392 с.
- Никоненко В.В., Заболоцкий В.И., Гнусин Н.П., Лебедев К.А. Влияние переноса коионов на предельную плотность тока в мембранной системе // Электрохимия. 1985. Т. 21. №6. C. 784-790.
- Мanzanares J., Kontturi K. Encyclopedia of Electrochemistry. 2003. Vol. 2. Interfacial Kinetics and Mass Transport / Eds. Bard A.J., Stratmann M., Calvo E.J. Indianapolis: Wiley Publ. Inc.: P. 87.
- Pellicer J., Mafe S. A., Aguilella V.M. Ionic transport across porous charged membranes and the Goldman constant field assumption // Ber. Bunsenges. Phys. 1986. Chem. Vol. 90. P. 867-872.
- Schlogl R. Electrodiffusion in freier Losung and geledenen Membranen // Ztschr. Phis. Chem. 1954. Bd. 1. No 5. P. 305-339.
- Minagawa M., Tanioka A., Ramerez P., Mafe S. Amino acid transport through cation exchange membranes: effects of pH on interfacial transport // J. Colloid Interface Sci. Vol. 188. 1997. P. 176-182.
- Minagawa M., Tanioka A. Leucine transport through cation exchange membranes: effects of HCl concentration on interfacial transport // J. Colloid Interface Sci. Vol. 202. 1998. P. 149-154.
- Lakshminarayanaiah N. Equation of Membrane Biophysics. N.Y.: Acad. Press. 1984. 186 p.
- Pellicer J., Mafe S., and Aguilella V. M. Ionic transport across porous charged membranes and the Goldman constant assumption // Ber. Bunsenges. Phys. Chem. 1986. Vol. 90. P. 867-872.
- Ramírez P., Alcaraz A., Mafe S., Pellicer J. pH and supporting electrolyte concentration effects on the passive transport of cationic and anionic drugs through fixed charge membranes // J. Membr. Sci. 1999. Vol. 161. P. 143-155.
Скачивания
Загрузки
Даты
Поступление
После доработки
Публикация
Как цитировать
Лицензия
Copyright (c) 2009 Сулейманов С.С., Куриленко А.К., Лебедев К.А.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.