The specific features of the pure bending of the elastic panel undergoing large strains
UDC
539.3Abstract
Within the framework of the semi-inverse method of three-dimensional nonlinear elasticity we consider the problem of the equilibrium and stability of a rectangular panel undergoing pure bending. By using two different models of compressible nonlinear elastic media — semi-linear material and Blatz & Ko material — the boundary value problems of the panel equilibrium were formulated and their numerical analysis was performed. For both models it was found that the loading diagram — the dependence of the bending moment on the angle of the bend — has a maximum point followed by a falling part. Using the bifurcation approach the problem on the stability of bent panel was studied. For this purpose the linearization of the equilibrium equations in the neighborhood of the constructed solution was performed and the possibility of the existence of nontrivial solutions of the resulting linear problem was investigated. An unusual feature of the panel instability under bending, discovered in this paper, is the existence of bifurcation points on the increasing section of the loading diagram. Analytical transformations associated with the derivation of nonlinear boundary value problems and the generation of equations of neutral equilibrium were performed using the automation system for semi-inverse method of nonlinear elasticity developed by the authors in the environment of computer algebra system Maple.
Keywords:
bending, semi-inverse method, nonlinear elasticity, large strains, stability, bifurcation pointFunding information
Работа выполнена в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009-2013 гг (Соглашение 14.A18.21.0389).
References
- Levy A.J., Shukla A., XieM. Bending and buckling of a class of nonlinear fiber composite rods // Journal of the Mechanics and Physics of Solids. 2006. No 54. P. 1064-1092.
- Karamanos S.A. Bending instabilities of elastic tubes // International Journal of Solids and Structures. 2002. No 32. P. 2059-2085.
- Gavrilyachenko T.M., Karyakin M.I., Sukhov D.Yu. Designing of the interface for nonlinear boundary value problem solver using Maple // Proceedings of the International Conference on Computational Sciences and its Applications. Los Alamitos-Washington-Tokyo: ICCSA, 2008. P. 284-291.
- Кирсанов М.Н. Maple и Maplet. Решение задач механики. С-Пб.: Лань, 2012. 512 с.
- Digital Mars. High performance compilers for the C, C++ and D programming languages. [Электронный ресурс]. URL: http://www.digitalmars.com (дата обращения: 20.09.2012)
- Гавриляченко Т. В., Карякин М. И. Об автоматизации анализа устойчивости равновесия скручиваемого вала // Современные проблемы механики сплошной среды. Труды 5-й Международной конференции.Ростов-на-Дону: Изд-во Северо-Кавказ. научн. центра высш. школы, 2000. С. 79-83.
- Лурье А. И. Нелинейная теория упругости. М.: Наука, 1980. 512 c.
- Калашников В.В., Карякин М.И. Использование модели материала Мурнагана в задаче плоского изгиба упругого стержня // Труды Ростовского гос. ун-та путей сообщения. 2006. №2(3). С. 56-65.
- Карякин М.И. Об особенностях растяжения нелинейно-упругих образцов // Экологический вестник научных центров Черноморского экономического сотрудничества. 2007. №4. С. 43-48.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2012 Карякин М.И., Сухов Д.Ю., Шубчинская Н.Ю.
This work is licensed under a Creative Commons Attribution 4.0 International License.