The specific features of the pure bending of the elastic panel undergoing large strains

Authors

  • Karyakin M.I. Southern Federal University, Rostov-on-Don, Russian Federation
  • Sukhov D.Yu. Southern Federal University, Rostov-on-Don, Russian Federation
  • Shubchinskaya N.Yu. Southern Federal University, Rostov-on-Don, Russian Federation

UDC

539.3

Abstract

Within the framework of the semi-inverse method of three-dimensional nonlinear elasticity we consider the problem of the equilibrium and stability of a rectangular panel undergoing pure bending. By using two different models of compressible nonlinear elastic media — semi-linear material and Blatz & Ko material — the boundary value problems of the panel equilibrium were formulated and their numerical analysis was performed. For both models it was found that the loading diagram — the dependence of the bending moment on the angle of the bend — has a maximum point followed by a falling part. Using the bifurcation approach the problem on the stability of bent panel was studied. For this purpose the linearization of the equilibrium equations in the neighborhood of the constructed solution was performed and the possibility of the existence of nontrivial solutions of the resulting linear problem was investigated. An unusual feature of the panel instability under bending, discovered in this paper, is the existence of bifurcation points on the increasing section of the loading diagram. Analytical transformations associated with the derivation of nonlinear boundary value problems and the generation of equations of neutral equilibrium were performed using the automation system for semi-inverse method of nonlinear elasticity developed by the authors in the environment of computer algebra system Maple.

Keywords:

bending, semi-inverse method, nonlinear elasticity, large strains, stability, bifurcation point

Funding information

Работа выполнена в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009-2013 гг (Соглашение 14.A18.21.0389).

Author info

  • Mikhail I. Karyakin

    канд. физ.-мат. наук, декан факультета математики, механики и компьютерных наук Южного федерального университета

  • Dmitriy Yu. Sukhov

    ассистент кафедры теории упругости Южного федерального университета

  • Nataliya Yu. Shubchinskaya

    аспирант кафедры теории упругости Южного федерального университета

References

  1. Levy A.J., Shukla A., XieM. Bending and buckling of a class of nonlinear fiber composite rods // Journal of the Mechanics and Physics of Solids. 2006. No 54. P. 1064-1092.
  2. Karamanos S.A. Bending instabilities of elastic tubes // International Journal of Solids and Structures. 2002. No 32. P. 2059-2085.
  3. Gavrilyachenko T.M., Karyakin M.I., Sukhov D.Yu. Designing of the interface for nonlinear boundary value problem solver using Maple // Proceedings of the International Conference on Computational Sciences and its Applications. Los Alamitos-Washington-Tokyo: ICCSA, 2008. P. 284-291.
  4. Кирсанов М.Н. Maple и Maplet. Решение задач механики. С-Пб.: Лань, 2012. 512 с.
  5. Digital Mars. High performance compilers for the C, C++ and D programming languages. [Электронный ресурс]. URL: http://www.digitalmars.com (дата обращения: 20.09.2012)
  6. Гавриляченко Т. В., Карякин М. И. Об автоматизации анализа устойчивости равновесия скручиваемого вала // Современные проблемы механики сплошной среды. Труды 5-й Международной конференции.Ростов-на-Дону: Изд-во Северо-Кавказ. научн. центра высш. школы, 2000. С. 79-83.
  7. Лурье А. И. Нелинейная теория упругости. М.: Наука, 1980. 512 c.
  8. Калашников В.В., Карякин М.И. Использование модели материала Мурнагана в задаче плоского изгиба упругого стержня // Труды Ростовского гос. ун-та путей сообщения. 2006. №2(3). С. 56-65.
  9. Карякин М.И. Об особенностях растяжения нелинейно-упругих образцов // Экологический вестник научных центров Черноморского экономического сотрудничества. 2007. №4. С. 43-48.

Downloads

Download data is not yet available.

Issue

Pages

69-75

Section

Article

Dates

Submitted

September 20, 2012

Accepted

September 27, 2012

Published

December 25, 2012

How to Cite

[1]
Karyakin, M.I., Sukhov, D.Y., Shubchinskaya, N.Y., The specific features of the pure bending of the elastic panel undergoing large strains. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2012, № 4, pp. 69–75.

Similar Articles

1-10 of 358

You may also start an advanced similarity search for this article.