Improvement of relation for electroosmotic slip velocity
UDC
532.516; 544.6Abstract
On any surface, under the action of an external electric field, there is a space charge region of small thickness, in which occurs the accumulation of charge. On the outer edge of the area due to the tangential component of the electric field, the slip of fluid takes place. This phenomenon is theoretically investigated in a number of works of the 2000. Rubinstein and Salzman were obtained the estimated formula for the speed of electroosmotic-slip of liquid, which, however, is not without a flaw, and therefore needs to be refined. In this article we obtain refined formula of Rubinstein-Saltzman, and is a fairly detailed derivation of this formula in the space charge region on the basis of asymptotic expansions.
Keywords:
slip velocity, asymptotic method, stretching of variables, space charge regionFunding information
Работа выполнена при поддержке РФФИ (проекты №13-08-96536 А, 15-08-02483 А).
References
- Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane // Physical Review E. 2000. Vol. 62. P. 2238-2251. doi: 10.1103/PhysRevE.62.2238
- Уртенов М.Х. Краевые задачи для систем уравнений Нернста-Планка-Пуассона (факторизация, декомпозиция, модели, численный анализ). Краснодар: Кубанский государственный университет. 1998. 125 c. [Urtenov M.Kh. Kraevye zadachi dlya sistem uravneniy Nernsta-Planka-Puassona (faktorizatsiya, dekompozitsiya, modeli, chislennyy analiz) [Boundary value problems for systems of equations Nernst-Planck-Poisson (factorization, decomposition, models, numerical analysis)]. Krasnodar, Kubanskiy gosudarstvennyy universitet Publ., 1998, 125 p. (In Russian)]
- Уртенов М.Х. Краевые задачи для систем уравнений Нернста-Планка-Пуассона (асимптотические разложения и смежные вопросы). Краснодар: Кубанский государственный университет. 1999. 124 c. [Urtenov M.Kh. Kraevye zadachi dlya sistem uravneniy Nernsta-Planka-Puassona (asimptoticheskie razlozheniya i smezhnye voprosy) [Boundary value problems for systems of equations Nernst-Planck-Poisson (asymptotic expansions and related issues)]. Krasnodar, Kubanskiy gosudarstvennyy universitet Publ., 1999, 124 p. (In Russian)]
- Бабешко В.А., Заболоцкий В.И., Кириллова Е.В., Уртенов М.Х. Декомпозиция систем уравнений Нернста-Планка-Пуассона // ДАН. 1995. Т. 344. № 3. С. 485-486. [Babeshko V.A., Zabolotskij V.I., Kirillova E.V., Urtenov M.K. Dekompozitsiya sistem uravneniy Nernsta-Planka-Puassona [Decomposition of Nernst-Planck-Poisson equation]. Doklady RAN [Rep. of Russian Academy of Sciences], 1995, vol. 344, no. 3, pp. 485-486. (In Russian)]
- Demekhin E.A., Shelistov V.S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Physical Review E. 2011. Vol. 84. 036318. doi: 10.1103/PhysRevE.84.036318
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Франц Е.А., Кирий В.А., Шелистов В.С., Куцепалов А.С., Демёхин Е.А.
This work is licensed under a Creative Commons Attribution 4.0 International License.