Mathematical modeling of non-standard multiplicative knapsack cryptosystems
UDC
519.72EDN
ZHXFOFAbstract
It investigates the development of mathematical models of alphabet cryptosystems based on the tasks a non-standard multiplicative knapsacks. Mathematical models of the cryptosystems in the form of tuples. Establishes necessary and sufficient conditions under which the generalized multiplicative injective knapsack vector over $Z_p$, $p\ge 2$. Developed mathematical model of the cryptosystem by overlapping scales, in which the algorithm of the inverse transformation of the closed text is reduced to an algorithmically non-solvable problem for the analyst. On the basis of the analysis previously offered a different backpack models are revealed qualitative features of non-standard multiplicative knapsack systems that increase their resistance to known attacks. We also study the problem of constructing isomorphic additive and multiplication knapsacks. Moreover, in contrast to the standard knapsack-teams, in which when determining the entrance of a knapsack or other components of the knapsack vector are either present or not, and here we consider the case when they can be repeated a specified number of times for a given array for both generic and super generic multiplicative knapsack.
Keywords:
alphabetic cryptosystem, mathematical model of cryptosystems, symmetric and asymmetric knapsack system of information protection, non-additive (multiplicative) knapsack, generalized (generalized super) multiplicative knapsackReferences
- Shannon C. Communication theory of secrecy systems // Bell System Techn. J. 1949. Vol. 28. No. 4. P. 656-715.
- Merkle R., Hellman M. Hiding information and signatures in trapdoor knapsacks // IEEE Transactions on Information Theory. 1978. Vol. IT-24. P. 525-530.
- Rivest R.L., Chor B. A knapsack-type public key cryptosystem based on arithmetic in finite fields // IEEE Transactions on Information Theory. 1988. Vol. 34. No. 5. P. 901-909.
- Shamir A. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem // IEEE Transactions on Information Theory. 1984. Vol. 30. No. 5. P. 699-704.
- Koblitz N. A course in number theory and cryptography. New York, Springer-Verlag, 1987.
- Осипян В.О. Об одном обобщении рюкзачной криптосистемы // Известия вузов. Сев.-Кавк. регион. Техн. науки. 2003. Прил. № 5. С. 18-25. [Osipyan V.O. Ob odnom obobshchenii rukzachnoi kriptosistemi [On a generalization of a knapsack cryptosystem]. Izv. vuzov Sev.-Kavk. reg. [Bulletin of the Universities of the Nord Caucasus region], 2003, no. 5, pp. 18-25.]
- Осипян В.О. О системе защиты информации на основе функционального рюкзака // Вопросы защиты информации. 2004. № 4. С. 16-18. [Osipyan V.O. O sisteme zashchity informatcii na osnove funktcional'nogo rukzaka [On a security system based on functional knapsack]. Voprosy zashchity informatcii [Question of information's security], 2004, no. 4, pp. 16-18.]
- Осипян В.О. О системе защиты информации на основе проблемы рюкзака // Известия Томского политехнического университета. 2006. Т. 309. № 2. С. 209-212. [Osipyan V.O. O sisteme zashchity informatcii na osnove problemy rukzaka [On a security system based on knapsack's problem]. Izvestiya Tomskogo Politekhnicheskogo universiteta [Bulletin of Tomsk politechnical University], 2006, vol. 309, no 2, pp. 209-212.]
- Осипян В.О., Арутюнян А.С., Спирина С.Г. Моделирование ранцевых криптосистем, содержащих диофантовую трудность // Чебышевский сборник. 2010. Т. XI. Вып. 1. С. 209-217. [Osipyan V.O., Harutunyan A.S., Spirina C.G. Modelirovanie rantcevyh kriptosistem, sodergashchikh diophantovuyu trudnost' [Modelling of knapsack cryptosystem Diophantine difficulty contains]. Chebyshevskii sbornik [Chebyshev's digest], 2010, vol. XI, no. 1, pp. 209-217.]
- Осипян В.О., Карпенко Ю.А., Жук А.С., Арутюнян А.Х. Диофантовы трудности атак на нестандартные рюкзачные системы защиты информации // Известия ЮФУ. Технические науки. 2013. № 12. С. 209-215. [Osipyan V.O., Kerpenko Y.A., Zhuk A.S., Harutunyan A.H. Diofantovy trudnosti atak na nestandartnye rukzachnye sistemy zashchity informatcii [Diophantine difficulties of attacks on non-standard knapsack security systems]. Izvestiya UFU. Tekhnicheskie nauki [Bulletin of South Federal University. Technical sciences]. 2013, no. 12, pp. 209-215.]
- Osipyan V.O. Information protection systems based on universal knapsack problem // SIN'13 Proceedings of the 6th International Conference on Security of Information and Networks, ACM, 2013. P. 343-346.
- Lenstra, Jr. H.W. Integer Programming with a Fixed Number of Variables // Mathematics of Operations Research. 1983. Vol. 8. No. 4. pp. 538-548.
- Vaudenay S. Cryptanalysis of the Chor-Rivest cryptosystem. Advances in Cryptology - CRYPTO '98: Proc. of 18th Annual International Cryptology Conference Santa Barbara, California, USA August 23–27, 1998. P. 243-256. DOI: 10.1007/BFb0055732
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2017 Осипян В.О., Лейман А.В., Чесебиев А.А., Жук А.С., Арутюнян А.Х., Карпенко Ю.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.