The domains of univalence and starlikeness of certain classes of regular functions

Authors

  • Yaremenko L.A. Kuban State University, Kranodar, Russian Federation
  • Gamayunova D.Yu. Kuban State University, Kranodar, Russian Federation

UDC

517.546.1

EDN

ZXPYLL

Abstract

The problem of finding the exact radius of univalence and the starlikeness of functions regular in the unit disc defined by integral representations is considered. A generalized interpretations of a whole series of problems that are encountered separately in the literature is given. In this paper within the presented theorem fairly general conditions for estimating the radius of starlikeness are established. The proof of the theorem reduces to finding a lower bound for a functional that depends on the value of the function and its derivative on the class of functions regular in the unit disc that have a positive real part in the disc. When the integral operator is specified and a special choice of functions regular in the disc is obtained, a number of corollaries of the theorem are obtained. The theorem and its consequences generalize similar results obtained earlier by different methods. An explicit expression is given for realizing estimates of the radius of extremal functions.

Keywords:

regular function, univalent starlikeness function, starlikeness functions of order alpha, estimates of the radius, radius of starlikeness, extremal functions, integral representations

Authors info

  • Lyudmila A. Yaremenko

    канд. физ.-мат. наук, доцент кафедры теории функций Кубанского государственного университета

  • Darya Yu. Gamayunova

    студентка Кубанского государственного университета

References

  1. Livingcton A.E. On the radius of univalence of certain analytic functions // Proc. Amer. Math. Soc. 1966. Vol. 17. No. 2. P. 352-357.
  2. Bernardi S.D. The radius of univalence of certain analytic functions // Proc. Amer. Math. Soc. 1970. Vol. 24. No. 2. P. 312-318.
  3. Bajpai S.K., Dwivedi S.P. Certain conveхity theorems for univalent analytic functions // Publ. de L'institut Mathemtique. 1980. Vol. 28. P. 5-11.
  4. Causey W.M., White W.L. Starlikeness of certain functions with integral representations // J. Math. Analysis and Appl. 1978. Vol. 64. No. 2. P. 458-466.
  5. Calys E. G. The radius of univalence and starlikeness of some classes of regular functions // Compos. Math. 1971. Vol. 23. No. 4. P. 467-470.
  6. Bajpai S.K., Srivastava R.S. On the radius of conveхity and starlikentss of univalent functions // Proc. Amer. Math. Soc. 1972. Vol. 32. No. 1. P. 153-160.
  7. Ярёменко Л.А. Радиусы звездности некоторых классов регулярных в круге функций. Кубан. гос. ун-т. Краснодар. Деп. в ВИНИТИ 26.03.09. № 168-В 2009. 10 с. [Yaremenko L.A. Radiusy zvezdnosti nekotorykh klassov regulyarnykh v kruge funktsiy [The radiuses of the starlikeness of some classes of regular in the disk functions]. Krasnodar, Kuban State University, 2009, Available from VINITI, no. 168-B 2009. 10 p. (In Russian)]
  8. Karunakaran V. Certain classes of regular univalent functions // Pacific J. Math. 1975. Vol. 61. No. 1. P. 173-182.
  9. Ярёменко Л.А. Оценки одного функционала на специальных классах регулярных функций // Кубан. гос. ун-т. Краснодар. Деп. в ВИНИТИ 28.10.88. № 7738-88. 15 с. [Yaremenko L.A. Otsenki odnogo funktsionala na spetsialnykh klassakh regulzrnykh funktsiy [Assessments of a single functional on special classes of regular functions]. Krasnodar, Kuban State University, 1988, Available from VINITI, no. 7738-88. 10 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

13-19

Section

Mathematics

Dates

Submitted

October 21, 2017

Accepted

November 21, 2017

Published

December 25, 2017

How to Cite

[1]
Yaremenko, L.A., Gamayunova, D.Y., The domains of univalence and starlikeness of certain classes of regular functions. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, № 4, pp. 13–19.

Similar Articles

1-10 of 168

You may also start an advanced similarity search for this article.