Coulomb correlations in an electron-hole semiconductor plasma in the vicinity of a quantum dot

Authors

  • Kurgachev A.Yu. Kuban State University, Krasnodar, Russian Federation
  • Ligachev D.V. Kuban State University, Krasnodar, Russian Federation
  • Rudoman N.R. Kuban State University, Krasnodar, Russian Federation
  • Tumayev E.N. Kuban State University, Krasnodar, Russian Federation

UDC

538.915

EDN

YABSZF

DOI:

10.31429/vestnik-15-3-87-91

Abstract

The paper considers coulomb correlations in electron-hole plasma of semiconductor heterostructures.As a heterostructure, a material based on a solid solution was chosen.As the potential that simulates the heterolayer, one-dimensional parabolic potential is taken.Unlike the commonly used heterolayer potential in the form of a rectangular well, a one-dimensional parabolic potential is chosen in the article.In the framework of this approximation, the Coulomb interaction of an electron and a hole in an exciton was considered as a perturbation.This choice of potential modeling a heterolayer has the following advantages:firstly, it allows us to abandon numerical calculations, replacing them with analytic studies;secondly, since the oscillatory potential grows indefinitely, the Coulomb interaction between the quasiparticles of the electron-hole plasma is small, in comparison with the heterolayer potential, which allows one to take it into account in the framework of perturbation theory.The wave functions of the electron-hole pair for the ground s-state are obtained and with their help the exciton binding energy is calculated as a function of the thickness of the heterolayer.In the framework of perturbation theory, the wave functions of the electron-hole pair (exciton) are obtained, and the main state of the exciton corresponding to the zero orbital momentum of the pair of quasiparticles (the s state of the exciton) is considered in the article.The calculations are performed for the ground state of the exciton corresponding to the s-state of the orbital motion of the electron and hole and zero vibronic numbers.The vibronic quantum numbers corresponding to the motion of an electron and a hole in a direction perpendicular to the heterolayerare also taken to be zero.Such a limit corresponds to a minimum of the exciton energy, i.e. its state of exciton.With the help of the found wave functions, the probability distribution of detection of the electron and hole at a distance ρ is obtained and analyzed as a function of the dimensionless coordinate ξ.With the help of the obtained wave functions, the binding energy of the ground state of the exciton is calculated as a function of the thickness of the heterolayer.The expressions obtained can be generalized to excitons with nonzero orbital quantum numbers.

Keywords:

heterolayer, electron-hole pair, parabolic potential, exciton wave function, exciton binding energy, perturbation theory, vibro

Funding information

Работа выполнена в рамках гранта № 16-42-230280 "Теоретическое и экспериментальное исследование коллективных явлений в электронно-дырочных системах в полупроводниковых наноструктурах"

Authors info

  • Aleksey Yu. Kurgachev

    аспирант кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

  • Dmitriy V. Ligachev

    аспирант кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

  • Nelli R. Rudoman

    аспирант кафедры физики и информационных систем Кубанского государственного университета

  • Evgeniy N. Tumayev

    д-р физ.-мат. наук, профессор кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

References

  1. Ненашев А.В. Моделирование электронной структуры квантовых точек Ge в Si. Автореф. дис.: канд. физ-мат наук. Новосибирск, 2004. 21 с. [Nenashev A.V. Modeling of the quantum dots electronic structure GE in Si. Abstr dis. cand. of phys.-math. sc. Novosibirsk, 2004.]
  2. Penn C., Schaffler F., Bauer G. Application of numerical exciton-wave-function calculations to the question of band alignment in Si(1-x)Gex quantum wells // Phys. Rev. B. 1998. Vol. 59. P. 13314. DOI: 10.1103/PhysRevB.59.13314
  3. Caruthers E., Lin-Chung P.J. Pseudopotential calculation for (GaAs)–(AlAs) and related monolayer heterostructures // Phys. Rev. В. 1978. Vol. 17. Iss. 6. C. 2705–2732. DOI: 10.1103/PhysRevB.17.2705
  4. Brent R.P. Algorithms for minimization without derivatives. Courier Dover Publication, 1973.
  5. Бабиченко В.С., Полищук И.Я. Кулоновские корреляции и электронно-дырочная жидкость в двойных квантовых ямах // Письма в ЖЭТФ. 2013. Т. 97. Вып. 11. С. 726–731. DOI: 10.7868/S0370274X13110052 [Babichenko V.S., Polishchuk I.Ya. Coulomb correlations and electron-hole fluid in double quantum wells. JETP Letters, 2013, vol. 97, iss. 11, pp. 726-–731. DOI: 10.7868/S0370274X13110052]

Downloads

Download data is not yet available.

Issue

Pages

87-91

Section

Physics

Dates

Submitted

June 20, 2018

Accepted

July 14, 2018

Published

September 29, 2018

How to Cite

[1]
Kurgachev, A.Y., Ligachev, D.V., Rudoman, N.R., Tumayev, E.N., Coulomb correlations in an electron-hole semiconductor plasma in the vicinity of a quantum dot. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 3, pp. 87–91. DOI: 10.31429/vestnik-15-3-87-91

Similar Articles

1-10 of 257

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>