On the 3D elastic wave propagation through a cascading system of three doubly-periodic arrays of co-planar cracks

Authors

  • Sumbatyan M.A. South Federal University, Rostov-on-Don, Russian Federation
  • Remizov M.Yu. South Federal University, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

YRMLED

DOI:

10.31429/vestnik-15-4-40-53

Abstract

The paper is devoted to the calculation of the reflection and transmission coefficients, when a plane wave is incident on a three-dimensional system of three parallel doubly-periodic gratings of rectangular cracks in the elastic material. In the one-mode frequency range the problem is reduced to a system of integral equations holding over the single chosen crack. The semi-analytical method previously introduced for three-dimensional scalar and two-dimensional elastic problems gives an explicit representations for the wave field and the scattering parameters.

Keywords:

double-periodic crack array, low-frequency mode, integral equation, transformation of hypersingular integral equation kernel, semi-analytical method, reflection and transmission coefficient, acoustic filter

Funding information

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 15-19-10008-П).

Authors info

  • Mezhlum A. Sumbatyan

    д-р физ.-мат. наук, профессор, главный научный сотрудник Южного федерального университета, профессор кафедры теоретической и компьютерной гидроаэродинамики Института математики, механики и компьютерных наук им. Воровича И.И.

  • Michael Yu. Remizov

    канд. физ.-мат. наук, доцент, старший научный сотрудник Института математики, механики и компьютерных наук им. Воровича И.И. Южного федерального университета

References

  1. Angel Y.C., Achenbach J.D. Harmonic waves in an elastic solid containing a doubly periodic array of cracks // Wave Motion. 1987. Vol. 9. P. 377–385.
  2. Scarpetta E., Sumbatyan M.A. On wave propagation in elastic solids with a doubly periodic array of cracks // Wave Motion. 1997. Vol. 25. P. 61–72.
  3. Zarrillo G., Aguiar K. Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface // IEEE Trans. Anten. 1998. Vol. AP-35. P. 1406–1417.
  4. Angel Y.C., Bolshakov A. In-plane waves in an elastic solid containing a cracked slab region // Wave Motion. 2000. Vol. 31. P. 297–315.
  5. Mykhas’kiv V.V., Zhbadynskyi I.Ya., Zhang Ch. Dynamic stresses due to time-harmonic elastic wave incidence on doubly periodic array of penny-shaped cracks // J. Math. Sci. 2014. Vol. 203. P. 114–122.
  6. Liu J., Li L., Xia B., Man X. Fractal labyrinthine acoustic metamaterial in planar lattices // Int. J. Solids Struct. 2018. Vol. 132–133. P. 20–30.
  7. Scarpetta E., Tibullo V. On the three-dimensionl wave propagation through cascading screens having a periodic system of arbitrary openings // Int. J. Eng. Sci. 2008. Vol. 46. P. 105–111.
  8. Remizov M.Yu., Sumbatyan M.A. On 3D theory of acoustic metamaterials with a triple-periodic system of interior obstacles // Proc. of National Academy of Sciences of Armenia. Mechanics. 2017. Vol. 70. Iss. 4. P. 35–49.
  9. Liu Z.,Zhang X., Mao Y. Locally resonant sonic materials // Science. 2000. No. 289(5485). P. 1734–1736.
  10. Бабешко В.А., Бабешко O.M., Евдокимова O.В. О трещинах в покрытиях в статических задачах сейсмологии и наноматериалав // ДАН. 2013. № 453(2). C. 162–166. [Babeshko V.A., Babeshko O.M., Evdokimova O.V. O treshchinakh v pokrytiyakh v staticheskikh zadachakh seysmologii i nanomaterialav [About the cracks in the coatings in static problems of seismology and nanomaterialov]. Doklady of Russian Academy of Science, 2013, no 453, iss. 2, pp. 162–166. (In Russian)]
  11. Glushkov Ye.V., Glushkova N.V., Golub M.V., Bostrom A.E. Natural resonance frequencies, wave blocking, and energy localization in an elastic half-space and waveguide with a crack // J. Acoust. Soc. Am. 2006. Vol. 119. Iss. 6. P. 3589–3598.
  12. Craster R.V. Guenneau S. Acoustic metamaterials. Springer series in materials science. Dordrecht: Springer, 2013. 166 p.
  13. Golub M.V., Doroshenko O.V., Bostrom A.E. Transmission of elastic waves through an interface between dissimilar media with random and periodic distributions of strip-like micro-cracks // Materials Physics and Mechanics. 2018. Vol. 37. P. 52–59.
  14. Бабешко В.А., Ратнер С.В., Сыромятников П.В. Анизотропные тела с неоднородностями; случай совокупности трещин // Изв. РАН. Механика твердого тела. 2007. № 5. C. 49–59. [Babeshko V.A., Ratner S.V., Syromyatnikov P.V. Anizotropnye tela s neodnorodnostyami; sluchay sovokupnosti treshchin [Anisotropic bodies with inhomogeneities, the case of a set of cracks]. News of wounds. Solid mechanics, 2007, no. 5, pp. 49–59. (In Russian)]
  15. Белоцерковский С.М. Лифанов И.К. Численные методы в сингулярных интегральных уравнениях и их применение в аэродинамике, теории упругости, электродинамике. М.: Наука, 1985. [Belotserkovsky S.M. Lifanov I.K. Chislennye metody v singulyarnykh integral'nykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike [Numerical methods in singular integral equations and their application in aerodynamics, elasticity theory, electrodynamics]. Nauka, Moscow, 1985. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

40-53

Section

Mechanics

Dates

Submitted

September 22, 2018

Accepted

October 19, 2018

Published

December 21, 2018

How to Cite

[1]
Sumbatyan, M.A., Remizov, M.Y., On the 3D elastic wave propagation through a cascading system of three doubly-periodic arrays of co-planar cracks. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 4, pp. 40–53. DOI: 10.31429/vestnik-15-4-40-53

Similar Articles

1-10 of 1092

You may also start an advanced similarity search for this article.