The fictitious absorption method in solving mixed problems for arbitrary simply-connected areas
UDC
539.3EDN
YABSXZDOI:
10.31429/vestnik-15-3-52-61Abstract
The work is dedicated to the development of methods for solving integral equations (IE) and systems of IE for mixed dynamic problems in the theory of elasticity, given in simply-connected areas of complex shape. A generalization of the fictitious absorption method to the case of a non-convex in the plane area occupied by a defect or stamp is presented.
The method makes it possible to describe solutions not only inside but also in the neighbourhood of the contact area boundaries and can be used to solve contact problems on the vibration of stamps, cavities or rigid inclusions of an arbitrary shape in the plane. For the areas of complex configuration, it is possible to present them as a union of convex bounded closed domains, possibly with common boundary sets.
We propose a modification of the method in the selection of the basis functions, presented in the solution only under the signs of the operators. As the latter, we choose the derivatives of the delta functions, which simplifies the construction of the solution. The results of solving the integral equation of the axisymmetric problem about steady-state oscillations of a stamp on the surface of an elastic layer with a clamped lower bound are given as an example.
Keywords:
fictitious absorption method, integral equation, oscillating kernel, area of complex configuration, factorizationFunding information
Работа выполнена в рамках ГЗ ЮНЦ РАН, проект № 01201354241 и при частичной поддержке РФФИ (проекты 18-01-00124, 18-05-80008).
References
- Механика контактных взаимодействий / под ред. И.И. Воровича, В.М. Александрова. М.: Физматлит, 2001. 672 с. [Vorovich, I.I., Aleksandrov, V.M. (eds.) Mechanics of contact interactions. Fizmatlit, Moscow, 2001. (In Russian)]
- Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с. [Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F. Dynamics of inhomogeneous linearly elastic media. Nauka, Moscow, 1989. (In Russian)]
- Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 265 с. [Babeshko, V.A. Generalized factorization method in spatial dynamic mixed problems of the theory of elasticity. Nauka, Moscow, 1984. (In Russian)]
- Бабешко В.А. К теории пространственных контактных задач для анизотропных сред // Докл. АН СССР. 1981. Т. 256, № 2. С. 324–328. [Babeshko, V.A. On the theory of spatial contact problems for anisotropic media. Doklady AN SSSR [Rep. of the USSR Academy of Sciences], 1981, vol. 256, no. 2, pp. 324–328. (In Russian)]
- Ватульян А.О., Овсепян В.В., Пряхина О.Д. Контактная динамическая задача для ортотропного цилиндра // Изв. АН АрмССР. Механика. 1983. Т.36, № 4. С. 47–55. [Vatul'yan, A.O., Ovsepyan, V.V., Pryahina, O.D. Contact dynamic problem for an orthotropic cylinder. Izvestiya AN ArmSSR. Mekhanika [News of Academy of Sciences of the Armenian SSR], 1983, vol. 36, no. 4, pp. 47–55. (In Russian)]
- Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. М.: Научный мир, 1999. 248 с. [Vorovich, I.I., Babeshko, V.A., Pryahina, O.D. Dynamics of massive bodies and resonant phenomena in deformable media. Nauchnyj mir, Moscow, 1999. (In Russian)]
- Калинчук В.В., Белянкова Т.И. Динамические контактные задачи для предварительно напряженных электроупругих тел. М.: Физматлит, 2006. 272 с. [Kalinchuk, V.V., Belyankova, T.I. Dynamic contact problems for prestressed electroelastic bodies. Fizmatlit, Moscow, 2006. (In Russian)]
- Калинчук В.В., Белянкова Т.И. Динамика поверхности неоднородных сред. М.: Физматлит, 2009. 312 с. [Kalinchuk, V.V., Belyankova, T.I. Dynamics of the surface of inhomogeneous media. Fizmatlit, Moscow, 2009. (In Russian)]
- Бабешко В.А. О неединственности решений динамических смешанных задач для систем штампов // Докл. АН СССР. 1990. Т. 310. № 6. С. 1327–1330. [Babeshko, V.A. On the nonuniqueness of solutions of dynamical mixed problems for stamping systems. Doklady AN SSSR [Rep. of the USSR Academy of Sciences, 1990, vol. 310, no. 6, pp. 1327–1330. (In Russian)]
- Капустин М.С., Павлова А.В., Рубцов С.Е., Телятников И.С. К моделированию взаимодействия фундамента с деформируемой грунтовой средой // Экологический вестник научных центров Черноморского экономического сотрудничества (ЧЭС). 2015. № 3. С. 44–51. [Kapustin, M.S., Pavlova, A.V., Rubtsov, S.E., Telyatnikov, I.S. On the modeling of the interaction of the foundation with the deformed soil environment. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, no. 3, pp. 44–51. (In Russian)]
- Kapustin M., Pavlova A., Rubtsov S., Telyatnikov I. Model of foundation-base system under vibration load // Communications in Computer and Information Science (CCIS). 2014. Vol. 487. P. 168–173. [Kapustin, M., Pavlova, A., Rubtsov, S., Telyatnikov, I. Model of foundation-base system under vibration load. Communications in Computer and Information Science (CCIS), 2014, vol. 487, pp. 168–173.]
- Babeshko V.A., Buzhan V.V., Williams R.T. Solid by an array of rigid planar inclusions // Doklady Physics. 2002. Vol. 47. Iss. 2. Р. 156–158.
- Пряхина О.Д., Смирнова А.В. Эффективный метод решения динамических задач для слоистых сред с разрывными граничными условиями // Прикладная математика и механика. 2004. Т. 68. Вып. 3. С. 499–506. [Pryahina, O.D., Smirnova, A.V. Effective method for solving dynamical problems for layered media with discontinuous boundary conditions. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 2004, vol. 68, no. 3, pp. 499–506. (In Russian)]
- Babeshko V.A., Pavlova A.V., Ratner S.V., Williams R.T. Problems on the vibration of an elastic half-space containing a system of interior cavities // Doklady Physics. 2002. Т. 47. № 9. С. 677–679.
- Kardovskii I.V., Pryakhina O.D. Apparent absorption method for solving planar problems of interfacial cracking // Doklady Physics. 2006. Т. 51. № 10. С. 574–577.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Павлова А.В., Капустин М.С., Телятников И.С.

This work is licensed under a Creative Commons Attribution 4.0 International License.