On the Numerical Solution of the Fedgolm Equation of the 1st Kind

Authors

  • Drobotenko M.I. Kuban State University, Krasnodar, Russian Federation
  • Vetoshkin P.V. Yunis-Yug Ltd., Krasnodar, Russian Federation

UDC

519.6

EDN

VEVDKK

DOI:

10.31429/vestnik-17-1-2-16-19

Abstract

In solving various applied problems of mathematical physics, integral equations are increasingly used. This arouses interest in methods for solving such equations.

This article discusses an approximate method for solving the Fredholm integral equation of the first kind with a Fredholm kernel. The method is based on the approximation of the solution of an integral equation by a system of point potentials.

The method of point potentials is successfully used to solve a number of problems in mathematical physics. This is due to its algorithmicity and ease of use for a wide class of areas. These advantages remain for the method proposed in the article.

An approximate solution to the integral equation is sought in the form of a linear combination of point potentials. To determine the coefficients of this linear combination, a variational problem is constructed.

The convergence of the method is proved. For the numerical implementation, a stable algorithm based on the regularization of the initial variational problem is proposed. The problem of finding an approximate solution is reduced to a system of linear algebraic equations.

Using the proposed method, the problem of flowing around an infinitely thin plate with a potential flow of an ideal fluid, which reduces to the Fredholm integral equation of the first kind with a logarithmic kernel, is solved. The results of numerical calculations are presented.

Keywords:

potentials method, integral equations, approximate methods

Authors info

  • Mikhail I. Drobotenko

    канд. физ.-мат. наук, старший научный сотрудник НИЧ Кубанского государственного университета

  • Pyotr V. Vetoshkin

    ведущий инженер ООО "Юнис-Юг"

References

  1. Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М.: Янус, 1995. 520 с. [Lifanov, I.K. Metod singuljarnyh integral'nyh uravnenij i chislennyj jeksperiment [The method of singular integral equations and numerical experiment]. Janus, Moscow, 1995. (In Russian)]
  2. Бреббия К., Телес Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987. 524 с. [Brebbija, K., Teles, Zh., Vroubel, L. Metody granichnyh jelementov [Boundary Methods]. Mir, Moscow, 1987. (In Russian)]
  3. Бойков И.В. Приближенные методы решения сингулярных интегральных уравнений. Пенза: Пензенский ГУ, 2004. 298 с. [Bojkov, I.V. Priblizhennye metody reshenija singuljarnyh integral'nyh uravnenij [Approximate methods for solving singular integral equations]. Penza State University, Penza, 2004. (In Russian)]
  4. Лежнев В.Г., Данилов Е.А. Задачи плоской гидродинамики. Краснодар: КубГУ, 2000. 92 с. [Lezhnev, V.G., Danilov, E.A. Zadachi ploskoj gidrodinamiki [Problems of flat hydrodynamics]. Kuban State University, Krasnodar, 2000. (In Russian)]
  5. Лежнев А.В., Лежнев В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: КубГУ, 2009. 111 с. [Lezhnev, A.V., Lezhnev, V.G. Metod bazisnyh potencialov v zadachah matematicheskoj fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)]
  6. Дроботенко М.И., Игнатьев Д.В. Метод точечных потенциалов для уравнений Лапласа // Экологический вестник научных центров Черноморского экономического сотрудничества. 2007. № 1. С. 5–9. [Drobotenko, M.I., Ignat'ev, D.V. Metod tochechnykh potentsialov dlya uravneniy Laplasa [The method of point potentials for the Laplace equations]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological bulletin of scientific centers of the Black Sea Economic Cooperation], 2007, no. 1, pp. 5–9. (In Russian)]
  7. Sakakibara K. Method of fundamental solutions for biharmonic equations based on Almansi-type decomposition // Applications of Mathematics. 2017. Vol. 62. Iss. 4. P. 297–317.
  8. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979. 286 с. [Tikhonov, A.N., Arsenin, V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving incorrect tasks]. Nauka, Moscow, 1979. (In Russian)]
  9. Морозов В.А. Регулярные методы решения некорректно поставленных задач. М.: Наука, 1987. 240 с. [Morozov, V.A. Regulyarnye metody resheniya nekorrektno postavlennykh zadach [Regular methods for solving incorrectly posed tasks]. Nauka, Moscow, 1987. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

16-19

Section

Mathematics

Dates

Submitted

January 24, 2020

Accepted

January 28, 2020

Published

March 31, 2020

How to Cite

[1]
Drobotenko, M.I., Vetoshkin, P.V., On the Numerical Solution of the Fedgolm Equation of the 1st Kind. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 1, pp. 16–19. DOI: 10.31429/vestnik-17-1-2-16-19

Similar Articles

1-10 of 470

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>