Local existence theorem for the solution of the generalized Laplace condition

Authors

  • Щербаков M.E. Kuban State University, Krasnodar, Russian Federation
  • Shcherbakov E.A. Kuban State University, Krasnodar, Russian Federation

UDC

517.9 (531/534)

EDN

EDINOR

DOI:

10.31429/vestnik-18-1-14-22

Abstract

The generalized Laplace condition describing equilibrium surface of pendant drop with intermediate layer is considered and the corresponding Cauchy problem is formulated. The main part of the generalized Laplace condition is not linear. We construct non-linear differential operator of the first order and formulate Cauchy problem for it. Using Shauder theorem we prove that it has analytic positive solution. We prove that the coefficients of the series representing this solution can be used as upper bounds for the moduli of the coefficients of the series formally representing a solution of the generalized Laplace condition. Thus, the existence of analytic solution of nonlinear equation representing generalized Laplace condition is proved. The theorem we proved gives a possibility to calculate with any degree of approximation the form of the drop. The method without any serious alterations can be used in order to investigate sessile drops.

Keywords:

equilibrium surface, Laplace condition, intermediate layer, generalized Laplace condition, mean curvature, Gauss curvature, Cauchy problem, Shauder theorem, majorizing series

Authors info

  • Mikhail E. Щербаков

    преподаватель кафедры функционального анализа и алгебры Кубанского государственного университета

  • Eugeniy A. Shcherbakov

    профессор кафедры теории функций Кубанского государственного университета

References

  1. Finn R. Equilibrium Capillary Surfaces. New York, Springer, 1986. 245 p. (Им. перевод Финн Р. Равновесные капиллярные поверхности. Математическая теория. М.: Мир, 1989, 310 с.)
  2. Boruvka L., Neumann A.W. Generalization of Classical Theory of Capillarity // J. Chem. Phys. 1977. Vol. 66. DOI: 10.1063/1.433866
  3. Коровкин В.П., Сажин Ф.М., Секриеру Г.В. О зависимости между капиллярными и расклинивающими силами // Матем. исслед. (Кишинёв). 1989. № 108. С. 28–32. [Korovkin V.P., Sazhin F.M., Sekrieru G.V. O zavisimosti mezhdu kapillyarnymi i rasklinivayushchimi silami [On the relationship between capillary and wedging forces]. Matematicheskie issledovaniya [Mathematical research], 1989, no. 108, pp. 28–32. (In Russian)]
  4. Maxwell G.C. Capillary Attraction // Encyclopedia Britannica. 9th. Ed., Vol. 5. Samuel L. Hall, New York, 1978 (I.3, I.6)
  5. Shcherbakov E. Equilibrium State of a Pendant Drop with Inter-phase Layer // Zeitschrift für Analysis und ihre Anwendungen. 2012. Vol. 31. C. 1–15. DOI: 10.4171/ZAA
  6. Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces. New Jersey, Prentice Hall, 1976. 503 p.
  7. Hutson V., Pym J., Cloud M. Applications of Analysis and Operator Theory. London, Academic Press, 1980. 390 pp. (Им. перевод Хатсон В., Пим Дж. Приложения функционального анализа и теории операторов / Под ред. А.А. Кириллова. М.: Мир, 1989. 431 с.)
  8. Матюхин С.И., Фроленков К.Ю. Форма капель, помещенных на твердую горизонтальную поверхность // Конденсированные среды и межфазные границы. 2013. Т. 15. № 3. С. 292–304. [Matyukhin S.I., Frolenkov K.Yu. Forma kapel', pomeshchennykh na tverduyu gorizontal'nuyu poverkhnost' [Form of droplets placed on a solid horizontal surface]. Kondensirovannye sredy i mezhfaznye granitsy [Condensed media and interphase boundaries], 2013, vol. 15, no. 3, pp. 292–304. (In Russian)]
  9. Klyachin A.A., Klyachin V.A., Grigorieva E.G. Visualization of Stability and Calculation of the Shape of the Equilibrium capillary Surface // Scientific Visualization. 2016. Quart. 2. Vol. 8. No. 2. P. 37–52.

Downloads

Download data is not yet available.

Issue

Pages

14-22

Section

Mathematics

Dates

Submitted

March 1, 2021

Accepted

March 15, 2021

Published

March 30, 2021

How to Cite

[1]
Щербаков M.E., Shcherbakov, E.A., Local existence theorem for the solution of the generalized Laplace condition. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, т. 18, № 1, pp. 14–22. DOI: 10.31429/vestnik-18-1-14-22

Similar Articles

1-10 of 413

You may also start an advanced similarity search for this article.