About determination of parameters of elastic fixing of the non-uniform beam

Authors

  • Vatulyan A.O. Southern Federal University, Rostov-on-Don, Russian Federation
  • Vasiliev L.V. Southern Federal University, Rostov-on-Don, Russian Federation

UDC

539.3

Abstract

Natural oscillations of an elastic rod with variable stiffness defined by an arbitrary positive function are considered. Natural oscillations in cases of arbitrary and constant stiffness are studied. Using the shooting method for the Cauchy problem, the differential equation of 4th order is reduced to the canonical system of differential equations, by solving the system and building a linear combination of the solutions, the algebraic system was obtained. To analyze the zeros of the system determinant, a program carrying out the construction of surface solutions is obtained. The three surface sections of solutions were analyzed. An asymptotic representation of the solutions for small and large fixing elastic parameters was constructed. Inverse problem on determination of the parameters of elastic fixing of the inhomogeneous beam was formulated. A new approach to solve this problem was proposed; based on the (priori known) asymptotic and numerical analysis in case of intermediate values of the parameters, the two methods of reconstruction of the described parameters characterizing the elastic fixing at one end of the beam at two known resonance frequencies. The influence of the impact of the input data noising on the reconstruction of the unknown parameters is estimated, the effect of deviations on the results is evaluated. The proposed methods allow restoring the parameters of the noise no more than 3% with high accuracy.

Keywords:

equation of 4th order with variable coefficients, boundary conditions, natural vibrations, reconstruction, asymptotic behavior, elastic fixation

Author info

  • Aleksandr O. Vatulyan

    д-р физ.-мат. наук, заведующий кафедрой теории упругости Института математики, механики и компьютерных наук Южного федерального университета

  • Leonid V. Vasiliev

    студент Института математики, механики и компьютерных наук Южного федерального университета

References

  1. Филиппов А.П. Колебания деформируемых систем. М., Машиностроение, 1970. 736 с. [Philippov A.P. Kolebaniya deformiruemyx system [Fluctuations deformable systems]. Moscow, Mashinostroenie Publ., 1970, 736 p. (in Russian)]
  2. Павлов Б.В. Акустическая диагностика механизмов. М.: Машиностроение, 1971. 224 с. [Pavlov B.V. Akusticheskaya diagnostika mexanizmov [Acoustic diagnostics mechanisms]. Moscow, Mashinostroenie Publ., 1971, 224 p. (In Russian)]
  3. Глаголевский Б.А., Москаленко И.Б. Низкочастотные акустические методы контроля в машиностроении Л.: Машиностроение, 1977. 203 с. [Glagolevskij B.A., Moskalenko I.B. Nizkochastotnye akusticheskie metody kontrolya v mashinostroenii [Low-frequency acoustic methods of control in mechanical engineering]. Leningrad, Mashinostroenie Publ., 1977, 203 p. (In Russian)]
  4. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М: Наука, 1980. 286 с. [Lavrentev M.M., Romanov V.G., Shishatskij S.P. Nekorrektnye zadachi matematicheskoj fiziki i analiza [Ill-posed problems of mathematical physics and analysis]. Moscow, Nauka Publ., 1980, 286 p. (In Russian)]
  5. Ватульян А.О. Обратные задачи в механике деформируемого твердого тела. М.: Физматлит, 2007. 223 с. [Vatulyan A.O. Obratnye zadachi v mexanike deformiruemogo tverdogo tela [Inverse Problems in Solid Mechanics]. Moscow, Fizmatlit Publ., 2007, 223 p. (In Russian)]
  6. Ахатов И.Ш., Ахтямов А.М. Определение вида закрепления стержня по собственным частотам его изгибных колебаний // Прикл. математика и механика. 2001. Т. 65. Вып. 2. C. 290-298. [Axatov I.Sh., Axtyamov A.M. Opredelenie vida zakrepleniya sterzhnya po sobstvennym chastotam ego izgibnyx kolebanij [Determining the type fastening rod using natural frequencies of its flexural vibrations]. Prikladnaya matematika i mexanika [Applied Mathematics and Mechanics], Tver, 2001, vol. 65, no. 2, pp. 290-298. (In Russian)]
  7. Ахтямов А.М. Теория идентификации краевых условий и её приложения. М.: Физматлит, 2009. 272 с. [Akhtyamov A.M. Teoriya identifikacii kraevyx uslovij i eyo prilozheniya [Theory of identification of boundary conditions and its applications]. Moscow, Fizmatlit Publ., 2009, 272 p. (In Russian)]
  8. Akhtyamov A.M., Mouftakhov A.V. Identification of boundary conditions using natural frequencies // Inverse Probl. Sci. Engng. 2004. Vol. 12. No. 4. P. 393-408.
  9. Ахтямов А.М., Сафина Г.Ф. Определение виброзащитного закрепления трубопровода // Прикладная механика и техническая физика. 2008. № 1. С. 139-147. [Akhtyamov A.M., Safina G.F. Opredelenie vibrozashhitnogo zakrepleniya truboprovoda [Determination of the piping vibration protection]. In Prikladnaya mexanika i texnicheskaya fizika [Applied Mechanics and Technical Physics], 2008, no. 1, pp. 139-147. (In Russian)]
  10. Калиткин Н.Н. Численные методы. Изд. 2. БХВ-Петербург, 2011. 586 с. [Kalitkin N.N. Chislennye metody. Izd. 2 [Numerical methods. Vol. 2]. BHV-Petersburg Publ., 2011, 586 p. (In Russian)]

Downloads

Issue

Pages

14-19

Section

Article

Dates

Submitted

August 15, 2015

Accepted

August 26, 2015

Published

September 30, 2015

How to Cite

[1]
Vatulyan, A.O., Vasiliev, L.V., About determination of parameters of elastic fixing of the non-uniform beam. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, № 3, pp. 14–19.

Similar Articles

1-10 of 1057

You may also start an advanced similarity search for this article.