Two-component elastic diffusion half-space under the influence of time-dependent perturbation

Authors

  • Davydov S.A. Moscow Aviation Institute (National Research University), Moscow, Russian Federation
  • Zemskov A.V. Moscow Aviation Institute (National Research University), Moscow, Russian Federation
  • Tarlakovskiy D.V. Moscow State University, Moscow, Russian Federation

UDC

539.3

Abstract

The problem of finding stress-strain state of the two-component half-space (for example alloy), with surface parallel to plane $x_1Ox_2$ of Cartesian coordinate system. The physics-mechanical processes in the Cartesian coordinate system are modeled by equations $$C_{3333}\frac{\partial^2u_3}{\partial x_3^2}=\rho\frac{\partial^2u_3}{\partial t^2}+\alpha_{33}^{\left(1\right)}\frac{\partial \eta^{\left(1\right)}}{\partial x_3}+\alpha_{33}^{\left(2\right)}\frac{\partial\eta^{\left(2\right)}}{\partial x_3},$$ $$D_{33}^{\left(q\right)}\frac{\partial^2\eta^{\left(q\right)}}{\partial x_3^2}=\frac{\partial \eta^{\left(q\right)}}{\partial t}+\Lambda_{3333}^{\left(q\right)}\frac{\partial^3u_3 }{\partial x_3^3}\quad\left(q=1,2\right) $$ where $t$ – time; $x_3$ – Cartesian coordinates; $u_3$ – displacements vector component $Ox_3$; $\eta^{\left(q\right)}=n^{\left(q\right)}-n_0^{\left(q\right)}$ – are the concentrations variation; $n_0^{\left(q\right)}$ – initial components concentrations; $n^{\left(q\right)}$ – are the concentrations; $C_{3333}$ – components of elastic constants tensor; $\rho$ – medium density; $\alpha_{33}^{\left(q\right)}$ – components of tensor, which is defined by crystal structure type and characterizing the relative volume change due to diffusion; $D_{33}^{\left(q\right)}$ – components of diffusion tensor; $R$ – is the universal gas constant; $T_0$ – temperature. Coefficients $\Lambda_{3333}^{\left(q\right)}$ are defined by the following formulas $$\Lambda_{3333}^{\left(q\right)}=\frac{n_0^{\left(q\right)}\alpha_{33}^{\left(q\right)}D_{33}^{\left(q\right)}}{RT_0}$$ It is assumed that at the surface of the half-space $x_3=0$ the displacement and diffusion flows are set $$\left. u_3\right|_{x_3=0}=f_3\left(t\right),\quad\left. J^{\left(q\right)}\right|_{x_3=0}=f_q\left(t\right),$$ $$u_3=O\left(1\right),\quad J^{\left(q\right)}=O\left(1\right)\quad\left(x_3\rightarrow\infty\right)$$ where $J^{\left(q\right)}=\Lambda_{3333}^{\left(q\right)}\cfrac{\partial^2u_3}{\partial x_3^2}-D_{33}^{\left(q\right)}\cfrac{\partial\eta^{\left(q\right)}}{\partial x_3}$ – diffusion flows. The initial terms are assumed zero: $$\left.u_3\right|_{t=0}=0,\quad\left.\frac{\partial u_3 }{\partial t}\right|_{t=0}=0,\quad\left.\eta^{\left(q\right)}\right|_{t=0}=0.$$ The solving algorithm is based on using integral Laplace transform and Fourier transform. The received Laplace transforms are rational functions of conversion parameter. Laplace transforms originals are sought by the second decomposition theorem of operational calculus. For Fourier inversion using a numerical algorithm based on the use of quadrature formulas Philo. The final solution is received as integral convolution. The cases of constant diffusion flows at the surfaces are shown.

Keywords:

elastic diffusion, time-dependent problems, Fourier transform, Laplace transform, half-space

Funding information

Работа выполнена при поддержке РФФИ (проект 14-08-01161 А).

Author info

  • Sergey A. Davydov

    студент Московского Авиационного Института (Национального исследовательского университета)

  • Andrey V. Zemskov

    канд. физ.-мат. наук, доцент кафедры Московского авиационного института (Национального исследовательского университета)

  • Dmitriy V. Tarlakovskiy

    д-р. физ.-мат. наук, заведующий лабораторией НИИ механики Московского государственного университета им. М.В. Ломоносова

References

  1. Данков П.Д., Чураев П.В. Эффект деформации поверхностного слоя металла при окислении // Доклады АН СССР. 1950. Т. 73. № 6. С. 1221-1125. [Dankov P.D., Churaev P.V. Jeffekt deformacii poverhnostnogo sloja metalla pri okislenii [The effect of deformation of the surface layer of the metal in the oxidation]. Doklady AN SSSR [Reports of the Russia Academy of Sciences], 1950, vol. 73, no. 6, pp. 1221-1125. (In Russian)]
  2. Кубашевский О., Гопкинс Б. Окисление металлов и сплавов. М.: Металлургия, 1965. 428 с. [Kubashevskij O., Gopkins B. Okislenie metallov i splavov [Oxidation of metals and alloys]. Moscow, Metallurgija Publ., 1965, 428 p. (In Russian)]
  3. Гойхбург Д.М., Земсков А.В., Тарлаковский Д.В. Двухкомпонентный упруго диффузионный слой под действием одномерных нестационарных возмущений // Вестник Московского авиационного института. 2013. Т. 20. № 2. С. 226-237. [Gojhburg D.M., Zemskov A.V., Tarlakovskij D.V. Dvuhkomponentnyj uprugo diffuzionnyj sloj pod dejstviem odnomernyh nestacionarnyh vozmushhenij [A two-component elastic diffusion layer under the action of one-dimensional unsteady perturbations]. Vestnik Moskovskogo aviacionnogo instituta [Bulletin of the Moscow Aviation Institute], 2013, vol. 20, no. 2, pp. 226-237. (In Russian)]
  4. Земсков А.В., Тарлаковский Д.В. Приближённое решение трёхмерной задачи об упругой диффузии для ортотропного слоя // Математичні методи та фізико-механічні поля. 2013. Т. 56. No 2. С. 178-191. [Zemskov A.V., Tarlakovskij D.V. Priblizhjonnoe reshenie trjohmernoj zadachi ob uprugoj diffuzii dlja ortotropnogo sloja [Approximate solution of the problem of three-dimensional elastic orthotropic diffusion layer]. Matematichnі metodi ta fіziko-mehanіchnі polja [Mathematical methods and physical-mechanical fields], 2013, vol. 56, no. 2, pp. 178-191. (In Russian)]
  5. Земсков А.В., Тарлаковский Д.В. Одномерная задача о нестационарной связанной упругой диффузии для слоя // Известия Саратовского университета. Новая серия, Серия Математика. Механика. Информатика. 2013. Т. 13. Вып. 4. ч.1, С. 52-59. [Zemskov A.V., Tarlakovskij D.V. Odnomernaja zadacha o nestacionarnoj svjazannoj uprugoj diffuzii dlja sloja [Dimensional problem of unsteady diffusion related to the elastic layer]. Izvestija Saratovskogo universiteta. Novaja serija, Serija Matematika. Mehanika. Informatika [Proc. of the Saratov University. The new series, Math. Mechanics. Computer Science], 2013, vol. 13, iss. 4, part 1, pp. 52-59. (In Russian)]
  6. Tarlakovskii D.V., Vestyak V.A., Zemskov A.V. Dynamic Processes in Thermoelectromagnetoelastic and Thermoelastodiffusive Media. Encyclopedia of thermal stress, volume 2, C-D, Springer Dordrecht Heidelberg New York London, Springer reference. 2014. P. 1064-1071.
  7. Трантер К.Дж. Интегральные преобразования в математической физике. М.: Государственное издательство технико-теоретической литературы, 1956. 204 с. [Tranter K.Dzh. Integral'nye preobrazovanija v matematicheskoj fizike [Integral transforms in mathematical physics]. Moscow, Gosudarstvennoe izdatel'stvo tehniko-teoreticheskoj literatury Publ., 1956, 204 p. (In Russian)]
  8. Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М.: Атомиздат, 1976. 1008 с. [Tablicy fizicheskih velichin. Spravochnik [Tables of physical quantities. Reference]. Moscow, Atomizdat Publ., 1976, 1008 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

31-38

Section

Article

Dates

Submitted

April 3, 2014

Accepted

April 12, 2014

Published

June 17, 2014

How to Cite

[1]
Davydov, S.A., Zemskov, A.V., Tarlakovskiy, D.V., Two-component elastic diffusion half-space under the influence of time-dependent perturbation. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, № 2, pp. 31–38.

Similar Articles

1-10 of 337

You may also start an advanced similarity search for this article.