Aspects of numerical solution of the unsteady problem of fluid wind motion
UDC
51.7DOI:
https://doi.org/10.31429/vestnik-20-1-12-18Abstract
The paper presents computational approaches for solving the unsteady test problem of wind motion of a fluid. When integrating a non-stationary inhomogeneous model, its solution is considered as the sum of solutions of a stationary inhomogeneous equation and a solution of a homogeneous non-stationary analog. The stationary inhomogeneous equation for the current function is approximated based on the Ilyin scheme and solved iteratively. To determine the variable component of the solution, a Sobolev type equation is obtained that is not resolved with respect to the time derivative. When implementing discrete models of ocean dynamics to solve specific problems, various model calculations are most often compared with each other, based on available data on the dynamics of waters in a given area and based on the experience and preferences of researchers. The presence of an exact solution to a particular problem allows you to objectively make such a choice. In this paper, some computational approaches are proposed for solving a non-stationary problem for further comparison with the obtained analytical "exact" solution. For the unsteady problem of the Ekman type wind circulation, analytical solutions are obtained for a space-variable wind effect. A numerical implementation algorithm is constructed to find an approximate solution. The results can be used in the construction of numerical models of the dynamics of the ocean and various reservoirs.
Keywords:
dimensionless problem, wind currents, test problem, analytical solution, current function, integral velocityAcknowledgement
References
- Марчук, Г.И., Саркисян, А.С., Математическое моделирование циркуляции океана. Наука, Москва, 1988. [Marchuk, G.I., Sarkisyan, A.S., Matematicheskoe modelirovanie cirkulyacii okeana = Mathematical modeling of ocean circulation. Nauka, Moskva, 1988. (in Russian)]
- Stommel, H., The westward intensification of wind-driven ocean currents. Trans. Amer. Geoph. Un., 1948, vol. 29, pp. 202–206.
- Stommel, H., The Gulf Stream. A Physical and Dynamical Description. University of California Press, 1965.
- Стоммел, Г., Гольфстрим. Москва, ИЛ, 1965. [Stommel, G., Gulfstream = Gulfstream. Moscow, Inostrannaya Literatura, 1965. (in Russian)]
- Еремеев, В.Н., Кочергин, В.П., Кочергин, С.В., Скляр, С.Н., Математическое моделирование гидродинамики глубоководных бассейнов. Севастополь, Экоси-Гидрофизика, 2002. [Eremeev, V.N., Kochergin, V.P., Kochergin, S.V., Sklyar, S.N., Matematicheskoe modelirovanie gidrodinamiki glubokovodnyh bassejnov = Mathematical modeling of hydrodynamics of deep-water basins. Sevastopol, Ekosi-Gidrofizika, 2002. (in Russian)]
- Kochergin, V.P., Dunets, T.V., Computational algorithm of the evaluations of inclinations of the level in the problems of the dynamics of basins. Physical oceanography, 2001, vol. 11, iss. 3, pp. 221–232.
- Kochergin, V.S., Kochergin, S.V., Sklyar, S.N., Analytical test problem of wind currents. In: Chaplina, T.O, (ed.) Processes in GeoMedia. Volume I. Springer Geology. Springer, Cham., 2020, pp. 17–25. DOI: 10.1007/978-3-030-38177-6_3
- Kochergin, V.S., Kochergin, S.V., Sklyar, S.N., Analytical solution of the test three-dimensional problem of wind flows. In: Chaplina T.O. (ed.) Processes in GeoMedia. Volume II. Springer Geology. Springer, 2021, pp. 65–71. DOI: 10.1007/978-3-030-53521-6_9
- Кочергин, В.С., Кочергин, В.С., Скляр, С.Н., Тестирование разностных схем при решении уравнения для функции тока на основе решения задачи ветровых течений. Экологический вестник научных центров Черноморского экономического сотрудничества, 2022, т. 19, № 2, с. 53–61. [Kochergin, V.S., Kochergin, S.V., Sklyar, S.N., Testing of difference schemes in solving the equation for the streem function based on solving the problem of wind currents. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2021, vol. 19, no. 2, pp. 53–61. (in Russian)] EDN: EBWSAI DOI: 10.31429/vestnik-19-2-53-61
- Кочергин, В.С., Кочергин, В.С., Скляр, С.Н., Аналитическое решение уравнения для функции тока в модели течений с переменным по пространству ветровым воздействием. Экологический вестник научных центров Черноморского экономического сотрудничества, 2022, т. 19, № 1, с. 16–25. [Kochergin, V.S., Kochergin, S.V., Sklyar, S.N., Analytical solution of the equation for the stream function in the model of flows with spatially variable wind action. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2021, vol. 19, no. 1, pp. 16–25. (in Russian)] EDN: XAPDKT DOI: 10.31429/vestnik-19-1-16-24
- Ильин, А.М., Разностная схема для дифференциального уравнения с малым параметром при старшей производной. Математические заметки, 1969, т. 6, вып. 2, с. 237–248. [Il'in, A.M., Difference scheme for a differential equation with a small parameter at the highest derivative. Matematicheskie zametki = Math notes, 1969, vol. 6, iss. 2, pp. 237–248. (in Russian)]
- Дулан, Э., Миллер, Дж., Шилдерс, У., Равномерные численные методы решения задач с пограничным слоем. Москва, Мир, 1983. [Dulan, E., Miller, Dzh., Shilders, U., Uniform numerical methods for solving problems with a boundary layer. Moscow, Mir, 1983. (in Russian)]
Downloads
Submitted
Published
How to Cite
Copyright (c) 2023 Kochergin V.S., Kochergin S.V., Sklyar S.N.
This work is licensed under a Creative Commons Attribution 4.0 International License.