Contact interaction of bandage and hollow cylinder under various inner pressure

Authors

  • Chebakov M.I. Southern Federal University, Rostov-on-Don, Российская Федерация
  • Kolosova E.M. Southern Federal University, Rostov-on-Don, Российская Федерация
  • Lyapin A.A. Southern Federal University, Rostov-on-Don, Российская Федерация

UDC

539.3

Abstract

The process of contact interaction of steel cylinder pipeline and bandage in presence of inclusion in surface layer of pipeline under the bandage studied. There is the fixed variable of time on the inner surface of pipeline. Two variants of interaction between pipeline and bandage are considered: rigid connection and frictional contact. In addition, various kinds of unsteady load are considered. The surface of inclusion could be described as part of ellipsoid. Corresponding problem could be considered as mathematical model of the pipeline with the near-surface volume defects after repair. The study described the stress-strain state of pipeline and the influence of load changing character and mechanical parameters on the concentration of stresses near the defect zone. The problem was solved using finite element package ANSYS 11. Model twenty-node finite element structural SOLID95 used to construct the finite element, which is modeling elastic deformations. Further for contact surfaces the elements CONTA174 and TARGE170 were used. We selected FULL TRANSIENT analysis with an optimal partition in time for simulation of the dynamic process so that the selected partition provides sufficient accuracy for the resulting solutions of finite element mesh. Consequently using larger time step simulation shows less accurate results. For different partitions of areas the optimal time step was determined. Taking into account the nonlinearity of the problem, an asymmetric solver was used for the solution. In calculations the main attention was paid to calculation of maximum values for the effective stress in the pipe, which, as shown by preliminary calculations, are in point at the interface between the pipe and inclusions. Based on these results it can be concluded that for the considered dynamic and static problems effective stress at the same internal pressures do not differ from each other. Obviously, this is due to the fact that the considered thin-walled structures have negligible inertia.

Keywords:

pipeline, defect, bandage, finite element method

Acknowledgement

Работа выполнена в рамках государственного задания (базовая часть) Минобрнауки России (проект №213.01-11/2014-28).

Author Infos

Mikhail I. Chebakov

д-р физ.-мат. наук, профессор, заведующий отделом механики контактных взаимодействий Научно-исследовательского института механики и прикладной математики им. Воровича И.И. Южного федерального университета

e-mail: chebakov@math.sfedu.ru

Elena M. Kolosova

канд. физ.-мат. наук, ведущий научный сотрудник отдела механики контактных взаимодействий Научно-исследовательского института механики и прикладной математики им. Воровича И.И. Южного федерального университета

e-mail: ekolosova@sfedu.ru

Aleksandr A. Lyapin

канд. физ.-мат. наук, младший научный сотрудник отдела механики контактных взаимодействий Научно-исследовательского института механики и прикладной математики им. Воровича И.И. Южного федерального университета

e-mail: jeroma61@yandex.ru

References

  1. ANSYS Rel. 11.0. Theory Reference for ANSYS and ANSYS Workbench. SAS IP Inc. Canonsburg, 2007. 1110 p.
  2. Beschetnikov A., L'vov G.I. Kontaktnaja zadacha dlja cilindricheskoj obolochki s bandazhom iz kompozitnogo materiala [Contact problem for a cylindrical shell with a bandage made of composite material]. Visnik NTU "HPI". Serija: Dinamika i micnist' mashin [Proc. of NTU "HPI". Series 'Dynamics and machine power'], 2012, no. 67 (973), pp. 19-25. (In Russian)
  3. Abdalla Filho J.E., Machado R.D., Bertin R.J., Valentini M.D. On the failure pressure of pipelines containing wall reduction and isolated pit corrosion defects. Computers and Structures, 2014, vol. 132, pp. 22-33.
  4. Rajabipour A., Melchers R.E. A numerical study of damage caused by combined pitting corrosion and axial stress in steel pipes. Corrosion Science, 2013, vol. 76, pp. 292-301.
  5. Chiodo M.S.G., Ruggieri C. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses. International Journal of Pressure Vessels and Piping, 2009, vol. 86, pp. 164-176.
  6. Köpple M.F., Lauterbach S., Wagner W. Composite repair of through-wall defects in pipework - Analytical and numerical models with respect to ISO/TS 24817. Composite Structures, 2013, vol. 95, pp. 173-178.
  7. Rehberg T., Schad M., Green M. Non-Metallic Composite Repair Systems for Pipes and Pipelines. Pipeline Technology, 2010, no. 1 - 3R international V Special-Edition, pp. 42-46.
  8. Alexander C. Design of an Optimized Composite Repair System for Offshore Risers Using Integrated Analysis and Testing Techniques. Offshore Technology Conference, 2012, pp. 1-13.
  9. Lehnickij S.G. Teorija uprugosti anizotropnogo tela [Theory of elasticity of an anisotropic body]. Moscow, Nauka, 1977, 416 p. (In Russian)

Issue

Pages

75-83

Submitted

2014-05-29

Published

2014-09-29

How to Cite

Chebakov M.I., Kolosova E.M., Lyapin A.A. Contact interaction of bandage and hollow cylinder under various inner pressure. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, no. 3, pp. 75-83. (In Russian)