Using solutions to adjoint problems in identifying the power of pollution sources and planning an experiment
UDC
51.37EDN
ZSBWKKDOI:
10.31429/vestnik-22-1-62-67Abstract
In the work for the passive impurity transfer model, the construction of an optimal measurement plan for the implementation of a variational algorithm for identifying the power of pollution sources is considered. The Jacobi information matrix is constructed using solutions to a series of related problems. It is known that measurements of the concentration field, which are performed at the points of maximum values, lead to increased conditionality of the problem being solved and faster convergence of the iterative process. The algorithm for constructing the Fischer information matrix is presented for the case of a three-dimensional model of passive impurity transport in the Sea of Azov. The effect of an instantaneous and permanent point source of pollution is considered. The results can be used to solve various environmental problems in studying the effects of anthropogenic pollution sources in the waters of the Azov and Black Seas.
Keywords:
planning of the experiment, transport model, passive admixture, identification, adjoint problem, minimization, Azov SeaFunding information
The work was carried out within the framework of the state assignment on topic no. FNNN-2024-0016 "Study of the spatio-temporal variability of oceanographic processes in the coastal, coastal and shelf zones of the Black Sea under the influence of natural and anthropogenic factors based on contact measurements and mathematical modeling" (code "Coastal research").
References
- Горский, В.Г., Планирование кинетических экспериментов. Москва, Наука, 1984. [Gorskij, V.G., Planirovanie kineticheskih ehksperimentov = Planning kinetic experiments. Moscow, Nau-ka, 1984. (in Russian)]
- Ермаков, С.М., Жиглявский, А.А., Математическая теория оптимального эксперимента. Москва, Наука, 1987. [Ermakov, S.M., Zhiglyavskij, A.A., Matematicheskaya teoriya optimal'nogo eksperimenta = Mathematical theory of optimal experiment. Moscow, Nauka, 1987. (in Russian)]
- Иванов, В.А., Фомин, В.В., Математическое моделирование динамических процессов в зоне море–суша. Севастополь, ЭКОСИ-гидрофизика, 2008. [Ivanov V.A., Fomin V.V. Matematicheskoe modelirovanie dinamicheskih processov v zone more–susha = Mathematical modeling of dynamic processes in the sea–land zone. Sevastopol: EKOSI-gidrofizika, 2008. (in Russian)]
- Пененко, В.В., Оценка параметров дискретных моделей динамики атмосферы и океана. Метеорология и гидрология, 1979, № 7, с. 77–90. [Penenko V.V., Estimation of parameters of discrete models of atmospheric and oceanic dynamics. Meteorologiya i gidrologiya = Meteorology and hydrology, 1979, no. 7, pp. 77–90. (in Russian)]
- Марчук, Г.И., Математическое моделирование в проблеме окружающей среды. Москва, Наука, 1982. [Marchuk, G.I., Matematicheskoe modelirovanie v probleme okruzhayu-shchej sredy = Mathematical modeling in environmental problems. Moscow, Nauka, 1982. (in Russian)]
- Кочергин, В.С., Кочергин, С.В., Идентификация мощности источника загрязнения в Казантипском заливе на основе применения вариационного алгоритма. Морской гидрофизический журнал, 2015, № 2, с. 79–88. [Kochergin, V.S., Kochergin, S.V., Identification of a Pollution Source Power in the Kazantip Bay Applying the Variation Algorithm. Morskoy gidrofizicheskiy zhurnal = Physical Oceanography, 2015, no. 2, pp. 69–76. (in Russian)] EDN: VDVDER. DOI: 10.22449/0233-7584-2015-2-79-88
- Кочергин, В.С., Определение поля концентрации пассивной примеси по начальным данным на основе решения сопряженных задач. Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа, 2011, вып. 25, т. 2, с. 370–376. [Kochergin, V.S., Determining the concentration field with used data measurements based on solving of adjoint problems. Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa = Environmental safety of coastal and shelf zones and integrated use of shelf resources, 2011, iss. 25, vol. 2, pp. 270–376. (in Russian)]
- Кочергин, В.С., Кочергин, С.В., Вариационные процедуры идентификации входных параметров модели переноса пассивной примеси. Экологический вестник научных центров Черноморского экономического сотрудничества, 2021, т. 18, № 3, с. 14–18. [Kochergin, V.S., Kochergin, S.V., Variacionnye procedury identifikacii vhodnyh parametrov modeli perenosa passivnoj primesi, Ekologicheskij vestnik nauchnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 3, pp. 14–18. (in Russian)] EDN: LVLLXX DOI: 10.31429/vestnik-18-3-41-45
- Страхов, В.Н., Метод фильтрации систем линейных алгебраических уравнений – основа для решения линейных задач гравиметрии и магнитометрии. Докл. АН СССР, 1991, т. 320, № 3, c. 595–599. [Strahov, V.N., The method of filtering systems of linear algebraic equations is the basis for solving linear problems of gravimetry and magnetometry. Dokl. AN SSSR = Rep. of the USSR Academy of Sciences, 1991, vol. 320, no. 3, pp. 595–599. (in Russian)]
- Кочергин, В.С., Кочергин, С.В., Использование решения сопряженных задач при идентификации входных параметров модели переноса и планировании эксперимента. Экологический вестник научных центров Черноморского экономического сотрудничества, 2017, № 2, с. 42–47. [Kochergin, V.S., Kochergin, S.V., Using the solution of conjugate problems in identifying input parameters of the transfer model and planning an experiment. Ekologicheskij vestnik nauchnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 42–47. (in Russian)] EDN: ZHXFNL
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Кочергин В.С., Кочергин С.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.