Uniqueness set for the single-layer potential

Authors

  • Svidlov A.A. Kuban State University, Krasnodar, Russian Federation
  • Drobotenko M.I. Kuban State University, Krasnodar, Russian Federation
  • Biryuk A.E. Kuban State University, Krasnodar, Russian Federation

UDC

519.63

EDN

TWTYOV

Abstract

The work is devoted to the question of completeness of the system of point potentials. We introduce the concept of a uniqueness set for the single-layer potential and prove that the system of point potential is complete if and only if the set of basis points (singularities) of potentials is a uniqueness set for the single-layer potential. We study properties of the introduced uniqueness sets (for the single layer potential) and give examples of sets that are uniqueness sets and those are not. We show that the new concept extends the concept of uniqueness set of harmonic functions. We give an example of a set of points, which is not a set of uniqueness of harmonic functions, however the corresponding system of point potential is complete. This set is a uniqueness set for the single-layer potential.

Keywords:

fundamental solutions method, point potentials method, basis potentials method

Authors info

  • Aleksandr A. Svidlov

    канд. физ.-мат. наук, старший преподаватель кафедры теории функций Кубанского государственного университета

  • Mikhail I. Drobotenko

    канд. физ.-мат. наук, доцент кафедры математических и компьютерных методов Кубанского государственного университета

  • Andrey E. Biryuk

    канд. физ.-мат. наук, доцент кафедры теории функций Кубанского государственного университета

References

  1. Купрадзе В.Д. О приближенном решении задач математической физики // УМН. 1967. Т. XXII. № 2(134). С. 59-107. [Kupradze V.D. O priblizhennom reshenii zadach matematicheskoy fiziki [About approximate solution of mathematical physics problems]. Uspekhi matematicheskikh nauk [Russian Mathematical Surveys], 1967, vol. XXII, no. 2(134), pp. 59-107. (In Russian)]
  2. Купрадзе В.Д., Алексидзе М.А. Метод функциональных уравнений для приближенного решения некоторых граничных задач // ЖВМиМФ. 1964. № 4. C. 683-715. [Kupradze V.D., Aleksidze M.A. Metod funktsional'nykh uravneniy dlya priblizhennogo resheniya nekotorykh granichnykh zadach [Functiol equations method for approximate solition boundary value problems]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of computational mathematics and mathematical physics], 1964, no. 4, pp. 683-715. (In Russian)]
  3. Лежнев А.В., Лежнёв В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: Издательство КубГУ, 2009. 111 с. [Lezhnev A.V., Lezhnev V.G. Metod bazisnykh potentsialov v zadachakh matematicheskoy fiziki i gidrodinamiki [Basis potentials method for mathematical physics and hydrodynamics problems]. Krasnodar, KubSU Publ., 2009, 111 p.]
  4. Свидлов А.А. Решение линейного уравнения Россби в ограниченной области // Ученые записки Казанского университета. Серия: Физико-математические науки. 2013. Т. 155. № 3. С. 142-149. [Svidlov A.A. Reshenie lineynogo uravneniya Rossbi v ogranichennoy oblasti [Solving the Linear Rossby Equation ia a finite domain]. Uchenie zapiski Kazanskogo universiteta: Serija: Fiziko-matematicheskie nauki [Scientific notes of Kazan University. Series: Physics and mathematics], 2013, vol. 155, no. 3, pp. 142-149.(In Russian)]
  5. Свидлов А.А., Бирюк А.Э., Дроботенко М.И. Негладкое решение уравнения Россби // Экологический вестник научных центров Черноморского экономического сотрудничества. 2013. № 2. С. 89-94. [Svidlov A.A., Biryuk A.E., Drobotenko M.I. Negladkoe reshenie uravnenija Rossbi [Unsmooth solution of Rossby equation]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2013, no. 2, pp. 89-94. (In Russian)]
  6. Уравнения с частными производными эллиптического типа. М.: Издательство иностранной литературы, 1957. 451 с. [Miranda K. Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa [Partial differential equations of elliptic type]. Moscow, Izdatel'stvo inostrannoy literatury Publ., 1957, 451 p.]
  7. Лекции по линейным интегральным уравнениям. М.: Физматлит, 1959. 233 с. [Mihlin S.G. Lektsii po lineynym integral'nym uravneniyam [Lections on linear integral equations]. Moscow, Fizmatlit Publ., 1959. 233 p.]

Downloads

Download data is not yet available.

Issue

Pages

77-81

Section

Article

Dates

Submitted

April 3, 2015

Accepted

April 14, 2015

Published

June 25, 2015

How to Cite

[1]
Svidlov, A.A., Drobotenko, M.I., Biryuk, A.E., Uniqueness set for the single-layer potential. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, № 2, pp. 77–81.

Similar Articles

1-10 of 368

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>