About cellular-automatic models of convection-diffusion processes of substances

Authors

  • Rubtsov S.E. Kuban State University, Krasnodar, Russian Federation
  • Pavlova A.V. Kuban State University, Krasnodar, Russian Federation
  • Savenkov S.I. Kuban State University, Krasnodar, Russian Federation

UDC

510.67:554

EDN

WDKVWL

Abstract

The work is devoted to cellular-automaton modeling of the substance diffusion and convection. Used approaches allow us to represent a complex process by a relatively simple transition functions and can serve as a supplement to the traditional models used to study the impurity transfer. We constructed models of the single-component substance migration in terms of cellular automatons for plane and spatial cases, which can be used in solving the environmental problems. Two dimensional CA with Margolus neighbourhood (TM diffusion), extended in three-dimensional space, is used as the basis for cellular-automaton model of impurity propagation in atmosphere. The classical model of the TM diffusion is supplemented by the elements that implement pollution transference by the wind and the obstacle avoidance of scattering impurities. The wording of the rules of movement and collision ensures that the laws of conservation of mass and momentum are valid. We also created windows-based application that implements described CA-algorithms. Pulse and continual sources of impurity emission can be considered in the application, and it is possible to demonstrate results as the projection on one of the planes at the set distance from the source. In addition, we implemented the transition from Boolean values to the continuous distribution functions of the impurity concentration, which is done by averaging the values of the states of the cells using the user-defined proximity.

Keywords:

cellular-automatic modelling, three-dimensional model, impurity, diffusion, transfer, obstruction

Funding information

Работа выполнена при поддержке гранта РФФИ и Администрации Краснодарского края (16-41-230175).

Authors info

  • Sergey E. Rubtsov

    канд. физ.-мат. наук, доцент кафедры математического моделирования Кубанского государственного университета

  • Alla V. Pavlova

    д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

  • Sergey I. Savenkov

    студент кафедры математического моделирования Кубанского государственного университета

References

  1. Фон Нейман Дж. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. 384 с. [Fon Nejman Dzh. Teorija samovosproizvodjashhihsja avtomatov [The theory of self-reproducing automatas], Moscow, Mir Publ., 1971, 384 p. (In Russian)]
  2. Toffoli Т. Cellular Automata as an Alternative to (rather than approximation of Differential Equations in Modeling Physics // Physica D. 1984. Vol. 10. P. 117-127.
  3. Toffolli T., Margolus N. Cellular Automata Machines. USA: MIT Press, 1987. 279 p.
  4. Bandman O. Comparative Study of Cellular automata Diffusion Models // Lecture Notes in Computer Science. 1999. Vol. 1662. P. 395-399.
  5. Weimar J. Cellular Automata for Reaction-Diffusion Systems // Parallel Computing. 1997. Vol. 23, No. 11. P. 1699-1715.
  6. Frisch U., Hasslacher B., Pomeau Y. Lattice-Gas automata for Navier - Stokes equations // Physical Review Letter. 1986. No. 56. P. 1505-1508.
  7. Frisch U., Crutchfield J.P., Hasslacher B., Lallemand P. Rivet L.-P. Lattice Gas hydrodynamics in two and three dimensions // Complex Systems. 1987. Vol. 1. P. 649-707.
  8. Ванаг В.К. Диссипативные структуры в реакционно-диффузионных системах. Эксперимент и теория. Ижевск: ИКИ, 2008. 300 c. [Vanag V.K. Dissipativnye struktury v reakcionno-diffuzionnyh sistemah. Jeksperiment i teorija [Dissipative structures in reaction-diffusion systems. Experiment and Theory]. Izhevsk, IKI Publ., 2008, 300 p. (In Russian)]
  9. Boccara N. Reaction-Diffusion complex systems. Berlin: Springer, 2004. 397 p.
  10. Bandman O. Parallel Simulation of Asynchronous Cellular Automata Evolution // Proc. of 7th International Conference on Cellular Automata, for Research and Industry, ACRI 2006. Vol. 4173 of LNCS. Springer, 2006. P. 41-47.
  11. Bandman O.L. A method for construction of cellular automata simulating pattern formation processes // Theoretical background of applied discrete mathematics. 2010. No. 4. P. 91-99.
  12. Kalgin K.V. Comparative Study of Parallel Algorithms for Asynchronous Cellular Automata Simulation on Different Computer Architectures // Proc. of ACRI-2010, LNCS 6350. Springer. 2010. P. 399-408.
  13. Марчук Г.И. Математическое моделирование в проблеме окружающей среды. М.: Наука, 1982. 315 с. [Marchuk G.I. Matematicheskoe modelirovanie v probleme okruzhajushhej sredy [Mathematical modeling in environmental problem]. Moscow, Nauka Publ., 1982, 320 p. (In Russian)]
  14. Бандман О.Л. Клеточно-автоматное моделирование пространственной динамики. Новосибирск: СО РАН, 2000. 113 c. [Bandman O.L. Kletochno-avtomatnoe modelirovanie prostranstvennoj dinamiki [Cellular automata modeling the spatial dynamics]. Novosibirsk, SO RAN Publ., 2000, 113 p. (In Russian)]
  15. Рубцов С.Е., Павлова А.В., Сунозов А.А. К клеточно-автоматному моделированию процесса диффузии и взаимодействия субстанций // Защита окружающей среды в нефтегазовом комплексе. 2014. № 2. С. 30-34. [Rubtsov S.E., Pavlova A.V., Sunozov A.A. K kletochno-avtomatnomu modelirovaniju processa diffuzii i vzaimodejstvija substancij [To cellular-automatic modeling of the process of diffusion and substances interaction]. Zashhita okruzhajushhej sredy v neftegazovom komplekse [Environmental protection in oil and gas complex], 2014, no. 2, pp. 30-34. (In Russian)]
  16. Рубцов С.Е., Павлова А.В., Шкурат И.И. О клеточно-автоматных моделях процесса течения жидкости при наличии препятствий и примеси // Защита окружающей среды в нефтегазовом комплексе. 2014. № 7. С. 39-44. [Rubcov S.E., Pavlova A.V., Shkurat I.I. O kletochno-avtomatnyh modeljah processa techenija zhidkosti pri nalichii prepjatstvij i primesi [About Cellular automata models of the process flow of the liquid in the presence of obstacles and impurities]. Zashhita okruzhajushhej sredy v neftegazovom komplekse [Environmental protection in oil and gas complex], 2014, no. 7, pp. 39-44. (In Russian)]
  17. Бандман О.Л. Инварианты клеточно-автоматных моделей реакционно-диффузионных процессов // Прикладная дискретная математика. 2012. № 3(17). С. 108-120. [Bandman O.L. Invarianty kletochno-avtomatnyh modelej reakcionno-diffuzionnyh processov [Invariants Cellular Automaton models of reaction-diffusion processes]. Prikladnaja diskretnaja matematika [Applied discrete mathematics], 2012, no. 3(17), pp 108-120. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

62-68

Section

Article

Dates

Submitted

June 27, 2016

Accepted

June 29, 2016

Published

June 30, 2016

How to Cite

[1]
Rubtsov, S.E., Pavlova, A.V., Savenkov, S.I., About cellular-automatic models of convection-diffusion processes of substances. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 2, pp. 62–68.

Similar Articles

1-10 of 270

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 > >>