To the study of the mixed dynamic problems for a limited volume of fluid on an elastic foundation

Authors

  • Rubtsov S.E. Kuban State University, Krasnodar, Russian Federation
  • Pavlova A.V. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

Abstract

The paper presents the results of analytical studies of the distribution of contact stresses at the interface between a limited pool of liquid and an elastic foundation. A limited amount of an ideal compressible fluid, located on deformable foundation, is considered. An elastic layer and an elastic half-space rigidly coupled with non-deformable base are considered as the latter. In the system “elastic medium - liquid” the oscillations are excited by surface vibrator. The velocity potential that satisfies the wave equation as the characteristic of the wave field in the liquid is being considered. It is assumed that the hydrodynamic pressure on the upper liquid surface is absent. The condition of impermeability is given on vertical borders, on bottom surface the liquid is affected by an elastic foundation. The displacement vector points of the elastic base satisfy the system of Lame differential equations. The interaction of the liquid and elastic medium is determined by the continuity of the vertical speed component in the contact area. It is believed that the system vibrations are of steady character. In this work the integral equation of the first kind with kernel is obtained and solved, depending on both difference and sum of the arguments, the function is also built, that describes the distribution of contact stresses in the area of contact between the liquid and the elastic media with consideration of physical and frequency factors. The relevance of research of dynamic interaction of hydraulic structures with deformable foundation is determined by the high requirements for reliability of their exploitation and the degree of certainty of the forecast of consequences in case of vibroseismic interactions. The results of this study may serve as a foundation for the further development of methods for solving dynamic contact problems of joint oscillations of elastic and liquid mediums.

Keywords:

limited pool of liquid, elastic foundation, harmonic oscillations, integral factorization method

Funding information

Работа выполнена при поддержке гранта РФФИ и администрации Краснодарского края (р_юг_а 16-41-230184).

Author info

  • Sergey E. Rubtsov

    канд. физ.-мат. наук, доцент кафедры математического моделирования Кубанского государственного университета

  • Alla V. Pavlova

    д-р физ.-мат. наук, доцент профессор кафедры математического моделирования Кубанского государственного университета

References

  1. Коренев Б.Г. Действие импульса на цилиндрические и призматические резервуары, наполненные жидкостью. В кн.: Строительная механика. М.: Стройиздат, 1966. С. 213-266. [Korenev B.G. Dejstvie impul'sa na cilindricheskie i prizmaticheskie rezervuary, napolnennye zhidkost'ju [Pulse action on the cylindrical and prismatic tanks filled with liquid]. In Stroitel'naja mehanika [Structural mechanics]. Moscow, Strojizdat Pub., 1966, pp. 213-266. (In Russian)]
  2. Климов М.А. Определение присоединенной массы жидкости в случае неосесимметричных колебаний днищ резервуаров. В кн.: Динамические напряжения и деформации в элементах энергетического оборудования. М.: Наука, 1977. С. 76-83 [Klimov M.A. Opredelenie prisoedinennoj massy zhidkosti v sluchae neosesimmetrichnyh kolebanij dnishh rezervuarov [Defining the associated mass of liquid in the case of axisymmetric vibrations of tank bottoms]. In Dinamicheskie naprjazhenija i deformacii v jelementah jenergeticheskogo oborudovanija [Dynamic stresses and strains in power equipment elements]. Moscow, Nauka Publ., 1977, pp. 76-83. (In Russian)]
  3. Сеймов В.М., Островерх Б.Н., Ермоленко А.И. Динамика и сейсмостойкость гидротехнических сооружений. Киев: Наук. думка, 1983. 320 с. [Sejmov V.M., Ostroverh B.N., Ermolenko A.I. Dinamika i sejsmostojkost' gidrotehnicheskih sooruzhenij [The dynamics and earthquake resistance of hydraulic structures]. Kiev, Nauk. dumka Pub., 1983, 320 p. (In Russian)]
  4. Сеймов В.М., Трофимчук А.Н., Савицкий О.А. Колебания и волны в слоистых средах. Киев: Наук. думка, 1990. 224 с. [Sejmov V.M., Trofimchuk A.N., Savickij O.A. Kolebanija i volny v sloistyh sredah [Oscillations and waves in layered media]. Kiev, Nauk. dumka Pub., 1990, 224 p.]
  5. Павлова А.В., Рубцов С.Е., Телятников И.С., Зарецкая М.В. Исследование напряженного состояния слоистой среды с жидким включением // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 1. С. 71-78. [Pavlova A.V., Rubtsov S.E., Telyatnikov I.S., Zaretskaja M.V. Issledovanie naprjazhennogo sostojanija sloistoj sredy s zhidkim vkljucheniem [Investigation of the stress state of layered medium with liquid inclusion]. Jekologicheskij vestnik nauchnyh centrov Chernomorskogo jekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2016, no. 1, pp. 71-78. (In Russian)]
  6. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 455 с. [Vorovich I.I., Aleksandrov V.M., Babeshko V.A. Neklassicheskie smeshannye zadachi teorii uprugosti [Non-classical mixed problem of elasticity theory]. Moscow, Nauka Publ., 1974, 455 p. (In Russian).]
  7. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 319 с. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskih oblastei [Dynamic mixed problem of elasticity theory for nonclassical domains]. Moscow, Nauka Publ., 1979, 319 p. (In Russian)]
  8. Рубцов С.Е. Исследование установившихся колебаний ограниченного объема жидкости на упругом слое // Известия высших учебных заведений, Сев.-Кав. регион, естественные науки, 2000. № 1. С. 49-51. [Rubtsov S.E. Issledovanie ustanovivshihsja kolebanij ogranichennogo ob#ema zhidkosti na uprugom sloe [The study stationary vibrations limited volume of fluid in the elastic layer]. Izvestija vysshih uchebnyh zavedenij, Severo-Kavkazskij region, estestvennye nauki [Proc. of the Universities. North-Caucasian region. Natural Sciences], 2000, no. 1, pp. 49-51. (In Russian)]
  9. Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах. М.: Наука, 1984. 285 с. [Babeshko V.A. Obobshchennyi metod faktorizacii v prostranstvennykh dinamicheskikh smeshannykh zadachakh teorii uprugosti [Generalized factorization method in spatial dynamic mixed problems of elasticity theory]. Moscow, Nauka Pub., 1984, 265 p. (In Russian)]
  10. Нобл Б. Метод Винера-Хопфа. М.: Иностр. лит., 1962. 280 с. [Nobl B. Metod Vinera-Hopfa [Wiener-Hopf method]. Moscow, Zurubezhnaya lit. Pub., 1962, 280 p. (In Russian)]

Downloads

Issue

Pages

75-81

Section

Article

Dates

Submitted

October 26, 2016

Accepted

November 9, 2016

Published

December 22, 2016

How to Cite

[1]
Rubtsov, S.E., Pavlova, A.V., To the study of the mixed dynamic problems for a limited volume of fluid on an elastic foundation. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 4, pp. 75–81.

Similar Articles

1-10 of 429

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 > >>