Inverse problems of crack's theory research with asymptotic approach using
UDC
534.16DOI:
https://doi.org/10.31429/vestnik-15-2-39-46Abstract
The effective approach for inverse problems of cracks identification in the layer is proposed. The scheme is based on asymptotic analysis of the problem, taking into account the small relative size of the defect. The crack identification is realized from the acoustic data - displacement fields wich on the part of upper bound measured. Asymptotic analysis of displacement fields in the layer and on the boundary is carried out. In the case of a crack, that allows parametrization by a finite number of parameters, for example, a straight-line crack, the identification problem is solved, the transcendental equations are obtained in regard to the corresponding defect's characteristics in the frequency sensing mode. The proposed approach is tested for a model inverse problem of a vertical crack, located on the boundary between two semi-layers. The steady-state oscillations for anti-plane deformations are considered. The expressions for displacement fields calculation for each of the semi-layers are recieved, asymptotic estimates of these expressions are obtained. The inverse problem of crack identification by amplitude characteristics of running waves is resolved. Transcendental expressions for crack's parameters identification are presented. The results of numerical experiments of characteristics' reconstruction are represented. The proposed approach effectiveness is conducted.
Keywords:
crack, layer, identification, asymptotic approach, oscillations, acoustic sensingReferences
- Герасимов В.Г., Покровский А.Д., Сухоруков В.В. Неразрушающий контроль. М.: Высшая школа, 1992. 424 с. [Gerasimov, V.G., Pokrovskii, A.D., Sukhorukov, V.V. Non-destructive testing. Visshaya shkola, Moscow, 1992. 424 p. (In Russian)]
- Ермолов И.Н., Алешин Н.П., Потапов А.И. Неразрушающий контроль. Акустические методы контроля. М.: Физмалит, 1991. 283 с. [Ermolov, I.N., Aleshin, N.P., Potapov, A.I. Non-Destructive testing. Acoustic control methods. Fizmatlit, Moscow, 1991. 283 p.]
- Краснощеков А.А., Соболь Б.В., Соловьев А.Н., Черпаков А.В. Идентификация трещиноподобных дефектов в упругих элементах конструкций на основе эволюционных алгоритмов // Дефектоскопия. 2011. №6. С. 67-75. [Krasnoshchekov, A.A., Sobol, B.V., Soloviev, A.N., Scoops, A.V. Identification of defects crack-like defects in elastic structural elements on the basis of evolutionary algorithms. Defectoscopy, 2011, no. 6, pp. 67-75. (In Russian)]
- Fomenko S.I., Golub M.V., Bui T.Q., Zhang Ch., Wang Y.-S. In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals // International Journal of Solids and Structures. 2014. Vol. 51. Iss. 13. P. 7444-7456.
- Glushkov E.V., Glushkova N.V., Eremin A.A. Guided wave based nondestructive testing and evaluation of effective elastic moduli of layered composite materials // Materials Physics and Mechanics. 2015. Vol. 23. P. 56-60.
- Соловьев А.Н., Соболь Б.В., Краснощеков А.А. Идентификация и исследование критического состояния поперечной трещины в полосе с накладкой на основе искусственных нейронных сетей // Дефектоскопия. 2014. №8. С. 23-35. [Soloviev, A.N., Sobol, B.V., Krasnoshchekov, A.A. Identification and investigation of the critical state of a transverse crack in a band with an overlay based on artificial neural networks. Defectoscopy, 2014, no. 8, pp. 23-35. (In Russian)]
- Ciarletta M., Iovane G., Sumbatyan M.A. Hypersingular shape sensitivity boundary integral equation for crack identification under harmonic elastodynamic excitation // Comput. Methods Appl. Mech. Engrg. 2007. Vol. 196. P. 2596-2618.
- Shifrin E.I. Identification of a finite number of small cracks in a rod using natural frequencies // Mechanical Systems and Signal Processing. 2016. Vol. 70-71. P. 613-624.
- Ватульян А.О., Явруян О.В. Асимптотичекий подход в задачах идентификации трещин // ПММ.2006. №4. С. 714-724. [Vatulyan, A.O., Yavruyan, O.V. Asymptotic approach to the problems of identification of cracks. Applied mathematics and mechanics, 2006, vol. 70, no. 4, pp. 714-724. (In Russian)]
- Ватульян А.О., Азарова П. А. Об асимптотическом анализе задачи о реконструкции трещины в вязкоупругом слое // Экологический вестник научных центров Черноморского экономического сотрудничества. 2011. №3. С. 21-29. [Vatulyan, A.O., Azarova P.A. On the asymptotic analysis of the problem of reconstruction of cracks in the viscoelastic layer. Ecological bulletin of the research centers of the Black Sea Economic Cooperation, 2011, no. 3, pp. 21-29. (In Russian)]
- Ватульян А.О. Беляк О. А. К реконструкции малых полостей в упругом слое // Дефектоскопия. 2006. №10. С. 33-39. [Vatulyan, A.O. Belyak, O.A. The reconstruction of small cavities in an elastic layer. Defectoscopy, 2006, no. 10, pp. 33-39. (In Russian)]
- Ворович И.И., Бабешко В.В. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1989. 320 с. [Vorovich, I.I., Babeshko, V.V. Dynamic mixed problems of elasticity theory for nonclassical domains. Nauka, Mooscow, 1989. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Ватульян А.О., Явруян О.В.
This work is licensed under a Creative Commons Attribution 4.0 International License.