Influence of the foundation microstructure on frictional forces during the motion of a flat punch

Authors

  • Belyak O.A. Rostov State Transport University, Rostov-on-Don, Russian Federation
  • Suvorova T.V. Rostov State Transport University, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

YABSXB

DOI:

10.31429/vestnik-15-3-25-31

Abstract

A mathematical model describing the contact interaction of a semi-infinite medium with a microstructure and a rigid flat punch is considered. The contact tangents and normal stresses are related by the Coulomb-Amonton friction law. The microstructure of a semi-infinite medium is described by equations of the heterogeneous two-phase Bio medium. The boundary problem describing the present problem is reduced to the integral equation of the first kind with a logarithmic kernel. The solution of the integral equation is based on the iterative algorithm. Formulas describing the stress-strain state in the contact region are obtained. The influence of the microstructure of a semi-infinite medium and the speed of the punch movement on the stress-strain state in the contact region is studied.

Keywords:

contact problem, friction, two-phase medium, integral equations

Funding information

Работа выполнена при поддержке РФФИ (проект 18-08-00260-а)

Authors info

  • Olga A. Belyak

    канд. физ.-мат. наук, доцент кафедры высшей математики Ростовский государственный университет путей сообщения

  • Tatyana V. Suvorova

    д-р физ.-мат. наук, профессор кафедры высшей математики Ростовский государственный университет путей сообщения

References

  1. Колесников И.В. Системный анализ и синтез процессов, происходящих в металлополимерных узлах трения фрикционного и антифрикционного назначения. М.: ВИНИТИ РАН, 2017. 384 с. [Kolesnikov, I.V. System analysis and synthesis of processes occurring in metal-polymeric knots of friction of frictional and antifriction purposes. VINITI RAS, Moscow, 2017, 384 p. (In Russian)]
  2. Био М.А. Механика деформирования и распространения акустических волн в пористой среде // Механика. Период. сб. переводов иностр. статей. 1963. № 82. Вып. 6. С. 103–134. [Bio, M.A. Mechanics of deformation and propagation of acoustic waves in a porous medium. Mekhanika. Period. sb. perevodov inostr. statey [Mechanics: Coll. of sci. works], 1963, no. 82, iss. 6, pp. 103–134. (In Russian)]
  3. Ковтун А.А. Об уравнениях Био и их модификациях // Ученые записки СПбГУ. 2011. № 444. Вып. 44. С. 3–26. [Kovtun, A.A. On the equations of Biot and their modifications. Uchenyye zapiski SpbGU [Scientists St. Petersburg State University notes], 2011, no. 444, iss. 44, pp. 3–26. (In Russian)]
  4. Горячева И.Г., Степанов Ф.И., Торская Е.В. Скольжение гладкого индентора при наличии трения по вязкоупругому полупространству // Прикл. математика и механика. 2015. Т. 79. Вып. 6. С. 853–863. [Goryacheva, I.G., Stepanov, F.I., Torskaya, E.V. Slipping smooth indenter under friction by a viscoelastic halfspace. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 2015, vol. 79, iss. 6, pp. 853–863. (In Russian)]
  5. Колосова Е.М., Чебаков М.И. Контактные задачи для трехслойной полосы при наличии сил трения // Прикл. математика и механика. 2012. Т. 76. Вып. 5. С. 795–802. [Kolosova, E.M., Chebakov, M.I. Contact problems for a three-layer strip in the presence of frictional forces. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 2012, vol. 76, iss. 5, pp. 795–802. (In Russian)]
  6. Беляк О.А., Суворова Т.В., Усошина Е.А. Математическое моделирование задачи о динамическом воздействии массивного объекта на неоднородное гетерогенное основание // Экологический вестник научных центров Черноморского экономического сотрудничества. 2014. № 1. С. 93–99. [Belyak, O.A., Suvorova, T.V., Usoshina, E.A. Mathematical modeling of the problem of the dynamic effect of a massive object on an inhomogeneous heterogeneous base. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, no. 1, pp. 93–99. (In Russian)]
  7. Suvorova T.V., Dobrynin N.F., V.M. Ermakov V.I. Kushtin V.I. Novakovich The impact of structure and water saturation of the subgrade of the railway on its deformation during high-speed movement //International Journal of Applied Engineering Research. 2016. Vol. 11. No. 23. P. 11448–11453. [Suvorova, T.V., Dobrynin, N.F., Ermakov, V.M., Kushtin, V.I., Novakovich, V.I. The impact of structure and water saturation of the subgrade of the railway on its deformation during high-speed movemen. Int. J. of Applied Engineering Research, 2016, vol. 11. no. 23, pp. 11448–11453.]
  8. Брычков Ю.А., Прудников А.П. Интегральные преобразования обобщенных функций. М.: Наука, 1977. 288 с. [Brychkov, Yu.A., Prudnikov, A.P. Integral transformations of generalized functions. Nauka, Moscow, 1977, 288 p. (In Russian)]
  9. Дмитриев В.И., В.И.. Сальников Р.В. Итерационный метод решения интегральных уравнений первого рода // Труды факультета ВМК МГУ им. М.В. Ломоносова 2003. № 15: Прикладная математика и информатика. C. 5–10. [Dmitriyev, V.I., Sal'nikov, R.V. An iterative method for solving integral equations of the first kind. Prikladnaya matematika i informatika [Applied Mathematics and Informatics], 2003, no. 15, pp. 5–10. (In Russian)]
  10. Chao-Lung Yeh, Lo Wei-Cheng, Jan Chyan-Deng An assessment of characteristics of acoustic wave propagation and attenuation trough eleven different saturated soils // American Geophysical Union, Fall Meeting. 2006. No. 12. P. 31.

Downloads

Download data is not yet available.

Issue

Pages

25-31

Section

Mechanics

Dates

Submitted

June 5, 2018

Accepted

July 18, 2018

Published

September 29, 2018

How to Cite

[1]
Belyak, O.A., Suvorova, T.V., Influence of the foundation microstructure on frictional forces during the motion of a flat punch. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 3, pp. 25–31. DOI: 10.31429/vestnik-15-3-25-31

Similar Articles

1-10 of 410

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)