Influence of the foundation microstructure on frictional forces during the motion of a flat punch
UDC
539.3EDN
YABSXBDOI:
10.31429/vestnik-15-3-25-31Abstract
A mathematical model describing the contact interaction of a semi-infinite medium with a microstructure and a rigid flat punch is considered. The contact tangents and normal stresses are related by the Coulomb-Amonton friction law. The microstructure of a semi-infinite medium is described by equations of the heterogeneous two-phase Bio medium. The boundary problem describing the present problem is reduced to the integral equation of the first kind with a logarithmic kernel. The solution of the integral equation is based on the iterative algorithm. Formulas describing the stress-strain state in the contact region are obtained. The influence of the microstructure of a semi-infinite medium and the speed of the punch movement on the stress-strain state in the contact region is studied.
Keywords:
contact problem, friction, two-phase medium, integral equationsFunding information
Работа выполнена при поддержке РФФИ (проект 18-08-00260-а)
References
- Колесников И.В. Системный анализ и синтез процессов, происходящих в металлополимерных узлах трения фрикционного и антифрикционного назначения. М.: ВИНИТИ РАН, 2017. 384 с. [Kolesnikov, I.V. System analysis and synthesis of processes occurring in metal-polymeric knots of friction of frictional and antifriction purposes. VINITI RAS, Moscow, 2017, 384 p. (In Russian)]
- Био М.А. Механика деформирования и распространения акустических волн в пористой среде // Механика. Период. сб. переводов иностр. статей. 1963. № 82. Вып. 6. С. 103–134. [Bio, M.A. Mechanics of deformation and propagation of acoustic waves in a porous medium. Mekhanika. Period. sb. perevodov inostr. statey [Mechanics: Coll. of sci. works], 1963, no. 82, iss. 6, pp. 103–134. (In Russian)]
- Ковтун А.А. Об уравнениях Био и их модификациях // Ученые записки СПбГУ. 2011. № 444. Вып. 44. С. 3–26. [Kovtun, A.A. On the equations of Biot and their modifications. Uchenyye zapiski SpbGU [Scientists St. Petersburg State University notes], 2011, no. 444, iss. 44, pp. 3–26. (In Russian)]
- Горячева И.Г., Степанов Ф.И., Торская Е.В. Скольжение гладкого индентора при наличии трения по вязкоупругому полупространству // Прикл. математика и механика. 2015. Т. 79. Вып. 6. С. 853–863. [Goryacheva, I.G., Stepanov, F.I., Torskaya, E.V. Slipping smooth indenter under friction by a viscoelastic halfspace. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 2015, vol. 79, iss. 6, pp. 853–863. (In Russian)]
- Колосова Е.М., Чебаков М.И. Контактные задачи для трехслойной полосы при наличии сил трения // Прикл. математика и механика. 2012. Т. 76. Вып. 5. С. 795–802. [Kolosova, E.M., Chebakov, M.I. Contact problems for a three-layer strip in the presence of frictional forces. Prikladnaya matematika i mekhanika [Applied mathematics and mechanics], 2012, vol. 76, iss. 5, pp. 795–802. (In Russian)]
- Беляк О.А., Суворова Т.В., Усошина Е.А. Математическое моделирование задачи о динамическом воздействии массивного объекта на неоднородное гетерогенное основание // Экологический вестник научных центров Черноморского экономического сотрудничества. 2014. № 1. С. 93–99. [Belyak, O.A., Suvorova, T.V., Usoshina, E.A. Mathematical modeling of the problem of the dynamic effect of a massive object on an inhomogeneous heterogeneous base. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2014, no. 1, pp. 93–99. (In Russian)]
- Suvorova T.V., Dobrynin N.F., V.M. Ermakov V.I. Kushtin V.I. Novakovich The impact of structure and water saturation of the subgrade of the railway on its deformation during high-speed movement //International Journal of Applied Engineering Research. 2016. Vol. 11. No. 23. P. 11448–11453. [Suvorova, T.V., Dobrynin, N.F., Ermakov, V.M., Kushtin, V.I., Novakovich, V.I. The impact of structure and water saturation of the subgrade of the railway on its deformation during high-speed movemen. Int. J. of Applied Engineering Research, 2016, vol. 11. no. 23, pp. 11448–11453.]
- Брычков Ю.А., Прудников А.П. Интегральные преобразования обобщенных функций. М.: Наука, 1977. 288 с. [Brychkov, Yu.A., Prudnikov, A.P. Integral transformations of generalized functions. Nauka, Moscow, 1977, 288 p. (In Russian)]
- Дмитриев В.И., В.И.. Сальников Р.В. Итерационный метод решения интегральных уравнений первого рода // Труды факультета ВМК МГУ им. М.В. Ломоносова 2003. № 15: Прикладная математика и информатика. C. 5–10. [Dmitriyev, V.I., Sal'nikov, R.V. An iterative method for solving integral equations of the first kind. Prikladnaya matematika i informatika [Applied Mathematics and Informatics], 2003, no. 15, pp. 5–10. (In Russian)]
- Chao-Lung Yeh, Lo Wei-Cheng, Jan Chyan-Deng An assessment of characteristics of acoustic wave propagation and attenuation trough eleven different saturated soils // American Geophysical Union, Fall Meeting. 2006. No. 12. P. 31.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2018 Беляк О.А., Суворова Т.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.