The Problem of Plates Hit with a Water Layer and the Method of Point Potentials

Authors

  • Vetoshkin P.V. Yunis-Yug Ltd., Krasnodar, Russian Federation
  • Drobotenko M.I. Kuban State University, Krasnodar, Russian Federation

UDC

519.6

DOI:

https://doi.org/10.31429/vestnik-17-1-2-27-30

Abstract

The problem of the impact of an absolutely solid plate on the surface of an ideal fluid layer is considered. The problem is formulated for the velocity potential as a boundary value problem for the Laplace equation in a layer and half-space (M.V. Keldysh – two-dimensional case, I.I. Vorovich, V.I. Yudovich – round disk case in ${\bf R}^3$). In the works of the mentioned authors, a flat plate and a flat bottom were considered. This made it possible to apply the Fourier transform, obtain an integral equation for the potential, and, using the expansion of the solution in special functions, calculate some basic hydrodynamic values.

To solve this problem, an algorithm is proposed in which the most difficult step is to solve a mixed boundary-value problem for the Laplace equation with a given boundary value on the plate surface.

For the numerical solution of this problem, the method of point potentials is used, which is also convenient for curvilinear boundaries. An approximate solution is represented as a linear combination of point potentials. To determine its coefficients, a variational problem is constructed, the solution of which reduces to a system of linear algebraic equations.

For a flat plate and a flat bottom, the results obtained are compared with the known ones. The results of solving the problem with a convex plate and a curved bottom are presented.

Keywords:

point potentials method, Laplace equation, numerical methods

Author info

  • Piotr V. Vetoshkin

    ведущий инженер ООО "Юнис-Юг"

  • Mikhail I. Drobotenko

    канд. физ.-мат. наук, старший научный сотрудник Научно-исследовательской части Кубанского государственного университета

References

  1. Келдыш М.В. Удар пластины о воду, имеющую конечную глубину: Избранные труды. Механика. М.: Наука, 1985. 568 с. [Keldysh M.V. Udar plastiny o vodu, imeyushchuyu konechnuyu glubinu: Izbrannye trudy. Mekhanika [Impact of a plate on water of finite depth: Selected Works. Mechanics]. Nauka, Moscow, 1985. (In Russian)]
  2. Ворович И.И., Юдович В.И. Удар круглого диска о жидкость конечной глубины // ПММ. 1957. Т. XXI. С. 525–532. [Vorovich I.I., Yudovich V.I. Udar kruglogo diska o zhidkost' konechnoy glubiny [The impact of a circular disk on a fluid of finite depth]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1957, vol. XXI, pp. 525–532.]
  3. Лежнев В.Г., Данилов Е.А. Задачи плоской гидродинамики. Краснодар: КубГУ, 2000. 92 с. [Lezhnev V.G., Danilov E.A. Zadachi ploskoj gidrodinamiki [Problems of flat hydrodynamics]. Kuban State University, Krasnodar, 2000. (In Russian)]
  4. Лежнев А.В., Лежнев В.Г. Метод базисных потенциалов в задачах математической физики и гидродинамики. Краснодар: КубГУ, 2009. 111 с. [Lezhnev A.V., Lezhnev V.G. Metod bazisnyh potencialov v zadachah matematicheskoj fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)]
  5. Лежнев М.В. Задачи и алгоритмы плоскопараллельных течений. Краснодар: КубГУ, 2009. 134 с. [Lezhnev M.V. Zadachi i algoritmy ploskoparallel'nykh techeniy [Tasks and algorithms of plane-parallel flows]. Kuban State University, Krasnodar, 2009. (In Russian)]
  6. Свидлов А.А., Бирюк А.Э., Дроботенко М.И. Негладкое решение уравнения Россби // Экологический вестник научных центров Черноморского экономического сотрудничества. 2013. № 1. С. 89–94. [Svidlov A.A., Biryuk A.E., Drobotenko M.I. Negladkoe reshenie uravneniya Rossbi [A non-smooth solution of the Rossby equation]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation], 2013, no. 1, pp. 89–94. (In Russian)]
  7. Дроботенко М.И., Игнатьев Д.В. Метод точечных потенциалов для уравнений Лапласа // Экологический вестник научных центров Черноморского экономического сотрудничества. 2007. № 1. С. 5–9. [Drobotenko M.I., Ignat'ev D.V. Metod tochechnykh potentsialov dlya uravneniy Laplasa [The method of point potentials for the Laplace equations] Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological bulletin of scientific centers of the Black Sea Economic Cooperation], 2007, no. 1, pp. 5–9. (In Russian)]
  8. Sakakibara K. Method of fundamental solutions for biharmonic equations based on Almansi-type decomposition // Applications of Mathematics. 2017. Vol. 62. Iss. 4. P. 297–317.

Downloads

Download data is not yet available.

Issue

Pages

27-30

Section

Mechanics

Dates

Submitted

January 24, 2020

Accepted

February 20, 2020

Published

March 31, 2020

How to Cite

[1]
Vetoshkin, P.V., Drobotenko, M.I., The Problem of Plates Hit with a Water Layer and the Method of Point Potentials. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 1, pp. 27–30. DOI: 10.31429/vestnik-17-1-2-27-30

Similar Articles

1-10 of 433

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>