Stationary processes of diffusion-convection-decomposition in a homogeneous half-space

Authors

  • Syromyatnikov P.V. Kuban State University, Krasnodar, Russian Federation
  • Krivosheeva M.A. Kuban State University, Krasnodar, Russian Federation
  • Lapina O.N. Kuban State University, Krasnodar, Russian Federation
  • Nesterenko A.G. Kuban State University, Krasnodar, Russian Federation
  • Nikitin Yu.G. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-16-4-31-42

Abstract

Algorithms for constructing the Fourier symbols of the Green's functions for stationary boundary problems of the 1st, 2nd, 3rd kind for a homogeneous diffusion half-space and an analogue of the second-kind problem for two linked half-spaces are developed, the properties of the symbols of fundamental solutions are investigated. Simple practical techniques are proposed for constructing a solution decreasing at infinity. For a boundary value problem of the third kind, it is shown that under certain boundary conditions the appearance of real and purely imaginary simple poles of the symbol of the Green's function is possible. Conditions were found under which these poles arise and conditions under which they are not guaranteed to arise. Three-dimensional model problems are calculated for all considered boundary value problems, which allow one to detect both similarities and differences of solutions. In the case of real poles, the solution differs significantly from all previous solutions. This solution is qualitatively similar to the patterns of anomalous diffusion in complex media.

Keywords:

stationary turbulent diffusion, boundary value problems, half-space, diffusion-convection-decay, Green's function, Fourier transform

Acknowledgement

Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2019 г. (№ г.р. 01201354241) при частичной поддержке гранта РФФИ и администрации Краснодарского края (проект 19-41-230011 р_а).

Author Infos

Pavel V. Syromyatnikov

д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики краснодарского отделения Южного научного центра РАН, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: syromyatnikov_pv@mail.ru

Margarita A. Krivosheeva

магистрант второго года обучения кафедры математического моделирования Кубанского государственного университета

e-mail: margarita.krivoscheeva@gmail.com

Olga N. Lapina

канд. физ.-мат. наук, доцент кафедры вычислительных технологий Кубанского государственного университета

e-mail: olga_ln@mail.ru

Aleksandr G. Nesterenko

канд. физ.-мат. наук, доцент кафедры физики информационных систем Кубанского государственного университета

e-mail: agnest@mail.ru

Yuriy G. Nikitin

канд. физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

e-mail: yug@fpm.kubsu.ru

References

  1. Beckman, I.N. Higher mathematics: the mathematical apparatus of diffusion: a textbook for undergraduate and graduate programs. Yurayt Publishing House, Moscow, 2018. (In Russian)
  2. Stepanenko, S.N., Voloshin, V.G., Tiptsov, S.V. The solution of the turbulent diffusion equation for a stationary point source. Ukrainian Hydrometeorological Journal, 2008, no. 3, pp. 13 24. (In Russian)
  3. Syromyatnikov, P.V., Krivosheeva, M.A., Nesterenko, A.G., Nikitin, Yu.G., Lapina, O.N. Model of distribution of pollutant substances in a multilayered medium with a periodic radiation source. Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 3, pp. 54 62. DOI: 10.31429/vestnik-16-3-54-62 (In Russian)
  4. Babeshko, V.A., Pavlova, A.V., Babeshko, O.M., Evdokimova, O.V. Mathematical modeling of environmental processes of the spread of pollutants. Kuban State University, Krasnodar, 2009. (In Russian)
  5. Order of the Ministry of Natural Resources and Ecology of the Russian Federation dated June 6, 2017 N 273 "On approval of calculation methods for dispersing emissions of harmful (polluting) substances in the air". Available at: http://docs.cntd.ru/document/456074826 (accessed: 11.28.2019). (In Russian)
  6. Davydov, S.A., Zemskov, A.V., Tarlakovsky, D.V. Two-component elastically diffusive half-space under the influence of unsteady disturbances. Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperatio, 2014, no. 2. pp. 31 38. (In Russian)
  7. Frank-Kamenetsky, D.A. Fundamentals of macrokinetics. Diffusion and heat transfer in chemical kinetics. Intellect Publishing House, 2008.
  8. Perepukhov, A.M., Kishenkov, O.V., Menshikov, L.I., Maksimychev, A.V., Alexandrov, D.A. Manifestation of the effect of anomalous diffusion in pore fluids. Applied Physics Transactions of Moscow Institute of Physics and Technology, 2015, vol. 7, no. 1, pp. 174 183. (In Russian)
  9. International library of mathematical routines IMSL. Available at: https://www.roguewave.com/products-services/ imsl-numerical-libraries (accessed: 11.28.2019)

Issue

Section

Mechanics

Pages

31-42

Submitted

2019-11-30

Published

2019-12-11

How to Cite

Syromyatnikov P.V., Krivosheeva M.A., Lapina O.N., Nesterenko A.G., Nikitin Yu.G. Stationary processes of diffusion-convection-decomposition in a homogeneous half-space. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 4, pp. 31-42. DOI: https://doi.org/10.31429/vestnik-16-4-31-42 (In Russian)