Contact problem of sliding a parabolic indenter on a heterogeneous base

Authors

  • Belyak O.A. Rostov State Transport University, Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya Sq., 2, Rostov-on-Don, 344038, Russian Federation ORCID 0000-0002-9487-0423
  • Suvorova T.V. Rostov State Transport University, Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya Sq., 2, Rostov-on-Don, 344038, Russian Federation ORCID 0000-0002-4187-8499

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-19-1-58-64

Abstract

The contact problem of the motion of a punch with a parabolic base shape along a heterogeneous fluid-saturated half-space is considered in a quasi-static formulation, taking into account friction in the contact area. A multiphase heterogeneous medium is described by the Biot-Frenkel model, and within the framework of the concept of effective homogeneity, an equivalent homogeneous medium is considered. The boundary value problem for the Biot medium is reduced to an integral equation of the 1st kind with a difference kernel having a logarithmic singularity using the Fourier transform. The solution of the integral equation is constructed by the boundary element method. The solution of the boundary value problem for an equivalent medium is implemented by the finite element method in the ANSYS software package. Based on the constructed solution of the contact problem, the influence of the mechanical properties of a heterogeneous medium, the friction coefficient on the stress state in the contact area and in its projection along the base depth is studied, which is of great practical importance in the design of new nanomodified antifriction composite materials. For this purpose, numerical experiments are carried out on the example of a nanomodified composite with a matrix of phenylone modified with an ultrafine additive of aluminum-magnesium spinel and cylinder oil. The effect of porosity, fluid saturation, the friction coefficient on the stress state of the base is studied.

Keywords:

quasi-static contact problem, fluid-saturated porous medium, frictional contact, Biot-Frenkel model

Acknowledgement

The publication was made as part of the implementation of a grant from Russian Railways for the development of scientific and pedagogical schools in the field of railway transport and a grant from the RGUPS.

Author Infos

Olga A. Belyak

кандидат физ.-мат. наук, доцент кафедры теоретическая механика ФГБОУ ВО «Ростовский государственный университет путей сообщения»

e-mail: belyak.o.a@gmail.com

Tatyana V. Suvorova

д-р физ.-мат. наук, профессор кафедры высшей математики ФГБОУ ВО «Ростовский государственный университет путей сообщения»

e-mail: suvorova_tv111@mail.ru

References

  1. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Блочные элементы в контактных задачах с переменным коэффициентом трения. Доклады Академии наук, 2018, т. 480, № 5, с. 537–541. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Block elements in contact problems with a variable friction coefficient. Doklady akademii nauk = Reports of the Russian Academy of Sciences, 2018, vol. 63, no. 6, pp. 239–243. (in Russian)] DOI 10.7868/S0869565218050067
  2. Горячева И.Г., Маховская Ю.Ю., Морозов А.В., Степанов Ф.И. Трение эластомеров. Ин-т компьютерных исследований, Москва–Ижевск, 2017. [Goryacheva I.G. Makhovskaya Yu.Yu., Morozov A.V., Stepanov F.I. Trenie elastomerov = Friction of elastomers. Institute of Computer Research Publ., Moscow–Izhevsk, 2017. (in Russian)]
  3. Горячева И.Г. Механика фрикционного взаимодействия. Наука, Москва, 2001. [Goryacheva I.G. Mekhanika friktsionnogo vzaimodeystviya = Mechanics of frictional interaction. Moscow, Nauka, 2001. (in Russian)]
  4. Торская Е.В. Модели фрикционного взаимодействия тел с покрытиями. Ин-т компьютерных исследований, Москва–Ижевск, 2020. [Torskaya E.V. Modeli friktsionnogo vzaimodeystviya tel s pokrytiyami = Models of frictional interaction of bodies with coatings. Institute of Computer Research Publ., Moscow–Izhevsk, 2020. (in Russian)]
  5. Солдатенков И.А. Износоконтактная задача с приложениями к инженерному расчету износа. Физматкнига, Москва, 2010. [Soldatenkov I.A. Iznosokontaktnaya zadacha s prilozheniyami k inzhenernomu raschetu iznosa = Wear-contact problem with applications to engineering calculation of wear. Fizmatkniga, Moscow, 2010. (in Russian)]
  6. Колесников В.И., Беляк О.А. Математические модели и экспериментальные исследования – основа конструирования гетерогенных антифрикционных материалов. Физматлит, Москва, 2021. [Kolesnikov V.I., Belyak O.A. Matematicheskie modeli i eksperimental'nye issledovaniya – osnova konstruirovaniya geterogennykh antifriktsionnykh materialov = Mathematical models and experimental studies are the basis for the design of heterogeneous antifriction materials. Fizmatlit, Moscow, 2021. (in Russian)]
  7. Sebestianiuk P., Perkowski D.M., Kulchytsky-Zhyhailo R. On contact problem for the microperiodic composite half-plane with slant layering. International Journal of Mechanical Sciences, 2020, vol. 182, p. 105734. DOI 10.1016/j.ijmecsci.2020.105734
  8. Balci M.N. The effect of punch speed on frictional contact mechanics of finitethickness graded layer resting on the rigid foundation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, vol. 42, p. 343. DOI 10.1007/s40430-020-02406-2
  9. Суворова Т.В., Беляк О.А. Контактные задачи для пористоупругого композита при наличии сил трения. Прикладная математика и механика, 2020, т. 84, № 4, с. 529–539. [Suvorova T.V., Belyak O.A. Contact problems for porous composite in the presence of friction forces. Prikladnaya matematika i mekhanika = Applied mathematics and mechanics, 2020, vol. 84, no. 4, pp. 522–532. (in Russian)] DOI 10.31857/S0032823520040104
  10. Био М.А. Механика деформирования и распространения акустических волн в пористой среде. Математика. Период. сб. переводов иностр. статей, 1963, вып. 6, № 82, с. 103–134. [Bio M.A. Mechanics of deformation and propagation of acoustic waves in a porous medium. Matematika: periodicheskiy sbornik perevodov inostrannykh statey = Mathematics. Periodic collection of translations of foreign articles, 1963, vol. 82, no. 6, pp. 103–134. (in Russian)]
  11. Balci M.N., Dag S. Dynamic frictional contact problems involving elastic coating. Tribology International, 2018, vol. 124, pp. 70–92. DOI 10.1016/j.triboint.2018.03.033
  12. Суворова Т.В., Беляк О.А., Усошин С.А. Волновое поле, генерируемое в слоистом пористоупругом полупространстве движущейся осциллирующей нагрузкой. Экологический вестник научных центров Черноморского экономического сотрудничества, 2008, № 1, с. 53–61. [Suvorova T.V., Belyak O.A., Usoshin S.A. A wave field generated in porous two-layered half-space by the action of an oscillating moving load. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2008, no. 1, pp. 53–61. (in Russian)]
  13. Kolesnikov V.I., Suvorova T.V., Belyak O.A. Modeling antifriction properties of composite based on dynamic contact problem for a heterogeneous foundation. Mater. Phys. Mech, 2020, vol. 46, no. 1, p. 139–148. DOI 10.18149/mpm.4612020_14
  14. Ватульян А.О., Плотников Д.К. К исследованию контактной задачи для неоднородной упругой полосы. Прикладная математика и механика, 2021, т. 85, № 3, с. 285–295. [Vatulyan A.O., Plotnikov D.K. On the study of the contact problem for an inhomogeneous elastic strip. Prikladnaya matematika i mekhanika = Applied mathematics and mechanics, 2021, vol. 85, no. 3, pp. 285–295. (in Russian)] DOI 10.31857/S0032823521030103
  15. Belyak O.A., Suvorova T.V. Modeling stress deformed state upon contact with the bodies of two-phase microstructure. Solid State Phenomena, 2020, vol. 299, pp. 124–129. DOI 10.4028/www.scientific.net/SSP.299.124

Issue

Section

Mechanics

Pages

58-64

Submitted

2022-01-25

Published

2022-03-30

How to Cite

Belyak O.A., Suvorova T.V. Contact problem of sliding a parabolic indenter on a heterogeneous base. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, vol. 19, no. 1, pp. 58-64. DOI: https://doi.org/10.31429/vestnik-19-1-58-64 (In Russian)