Contact problem in a quarter plane with a rigid stamp as the basis of problems with a deformable stamp
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-20-3-80-85Abstract
The paper considers the contact problem of the action of an absolutely rigid stamp in the form of a quarter plane on a multilayer medium. This problem is the initial one for solving the contact problem under consideration, but already with a deformable stamp. Methods of solving the resulting there is no integral equation of the contact problem, either by numerical or analytical approaches. In this paper, it is developed using a universal modeling method developed by the authors earlier. The method made it possible to transform an integral equation posed in a quarter plane to a differential one, and then reduce it to a factorization problem. This made it possible to construct an exact solution to the contact problem in the quarter plane. This result, then, after constructing the solution of the boundary problem in a quarter plane, it turns out to be possible to use it to solve the contact problem with a deformable stamp. The article provides another representation of the solution of the integral equation, valid for more general properties of the kernel of the integral equation.
Keywords:
contact problem, absolutely rigid stamp, block element method, integral equationFunding information
The work was supported by the Russian Science Foundation (project no. 22-21-00129).
References
- Галин, Л.А., Контактные задачи теории упругости. Москва, Гостехиздат, 1953. [Galin, L.A., Kontaktnye zadachi teorii uprugosti = Contact problems of elasticity theory. Moscow, Gostekhizdat, 1953. (in Russian)]
- Галин, Л.А., Смешанная задача теории упругости с силами трения для полуплоскости. ДАН СССР, 1943, т. ХХХIХ, № 3, с. 88–93. [Galin, L.A., Mixed problem of elasticity theory with friction forces for a half-plane. Doklady Akademii nauk SSSR = Rep. of the Academy of Sciences of the USSR, 1943, vol. XXXIX, no. 3, pp. 88–93. (in Russian)]
- Галин, Л.А., Вдавливание штампа при наличии трения и сцепления. ПММ, 1945, т. IX, вып. 5, с. 413–424. [Galin, L.A., Stamp indentation in the presence of friction and adhesion. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 1945, vol. IX, iss. 5, pp. 413–424. (in Russian)]
- Галин, Л.А., Контактные задачи теории упругости и вязкоупругости. Москва, Наука, 1980. [Galin, L.A., Kontaktnye zadachi teorii uprugosti i vyazkouprugosti = Контактные задачи теории упругости и вязкоупругости. Moscow, Nauka, 1980. (in Russian)]
- Горячева, И.Г., Добычин, М.Н., Контактные задачи трибологии. Москва, Машиностроение, 1988. [Goryacheva, I.G., Dobychin, M.N., Kontaktnye zadachi tribologii = Contact problems of tribology. Moscow, Mashinostroenie, 1988. (in Russian)]
- Papangelo, A., Ciavarella, M., Barber, J.R., Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws. Proc. R. Soc. A., 2015, vol. 471, art. 20150271. DOI: 10.1098/rspa.2015.0271
- Ciavarella, M., The generalized Cattaneo partial slip plane contact problem. I–Theory. Int. J. Solids Struct., 1998, vol. 35, pp. 2349–2362. DOI: 10.1016/S0020-7683(97)00154-6
- Ciavarella, M., The generalized Cattaneo partial slip plane contact problem. II–Examples. Int. J. Solids Struct., 1998, vol. 35, pp. 2363–2378. DOI: 10.1016/S0020-7683(97)00155-8
- Zhou, S., Gao, X.L., Solutions of half-space and half-plane contact problems based on surface elasticity. Zeitschrift fr angewandte Mathematik und Physik, 2013, vol. 64, pp. 145–166. DOI: 10.1007/s00033-012-0205-0
- Guler, M.A., Erdogan, F., The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci., 2007, vol. 49, pp. 161–182. DOI: 10.1016/j.ijmecsci.2006.08.006
- Ke, L.-L., Wang, Y.-S., Two-dimensional sliding frictional contact of functionally graded materials. Eur. J. Mech. A/Solids, 2007, vol. 26, pp. 171–188. DOI: 10.1016/j.euromechsol.2006.05.007
- Almqvist, A., Sahlin, F., Larsson, R., Glavatskih, S., On the dry elasto-plastic contact of nominally flat surfaces. Tribology International, 2007, vol. 40, iss. 4, pp. 574–579. DOI: 10.1016/j.triboint.2005.11.008
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Точное решение универсальным методом моделирования контактной задачи в четверти плоскости многослойной среды. ПММ, 2022, т. 86, № 5, с. 628–637. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Exact solution by a universal method for modeling a contact problem in a quarter-plane of a multilayer medium. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 2022, vol. 86, no. 5, pp. 628–637. (in Russian)] DOI: 10.31857/S0032823522050046
- Ворович, И.И., Бабешко, В.А., Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука, 1979. [Vorovich, I.I., Babeshko, V.A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic mixed problems of elasticity theory for nonclassical domains. Nauka, Moscow, 1979. (in Russian)]
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Фрактальные свойства блочных элементов и новый универсальный метод моделирования. Доклады Академии наук, 2021, т. 499, с. 21–26. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Rep. of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI: 10.31857/S2686740021040039
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2023 Мухин А.С., Евдокимова О.В., Уафа С.Б., Бушуева О.А., Хрипков Д.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.