On the deformation of composite elastic bodies with empty pores
UDC
539.3EDN
ZUBCXQDOI:
10.31429/vestnik-22-1-68-79Abstract
The problem of refining the stress-strain state resulting from the deformation of composite elastic bodies with uniformly distributed empty pores is investigated. Based on the Lagrange variational principle and the Cowin–Nunziato micro-dilation model, the problems of static deformation of composite porous elastic bodies (rod and cylinder) are formulated taking into account surface effects in the conjugation region. In comparison with the classical formulation, equilibrium equations for non-classical stresses and additional boundary conditions and conjugation conditions for non-classical stresses and the porosity function are specified. In the course of non-dimensionalization of the problems, two small parameters are introduced: the connectivity parameter and the scale parameter responsible for the boundary effects at the boundary and in the contact region. Accurate analytical solutions of the problems for composite bodies are obtained, satisfying the corresponding boundary conditions and conjugation conditions. First, formulas are obtained for finding the distribution of the porosity function and non-classical stresses, and then formulas for finding displacements. The difference between the distribution of displacements found by solving the problems in the classical and micro-dilation formulations is shown. The influence of the connectivity parameter, the~scale parameter and the surface modulus of elasticity on the stress-strain state of composite porous elastic bodies is investigated. It is found that a local change in the porosity function occurs in the vicinity of the contact zone; with an increase in the scale parameter, a decrease in displacements and an increase in the width of the transition zone for the porosity functions are observed; with an increase in the connectivity parameter, an increase in the porosity functions and displacements and a smoother distribution of the porosity function in the contact area; when taking into account surface effects, porosity reaches a maximum value at the conjugation point, and then quickly decreases to the values calculated within the micro-dilation model in the absence of surface effects; non-classical stresses are proportional to the square of the scale parameter, at small values of which they have values much smaller than the values of classical stresses, and in the contact area they experience a jump or reach their peak in the absence of surface effects.
Keywords:
porous material, composite body, rod, cylinder, micro-dilatational theory of elasticity, displacement, connectivity parameter, scale parameter, surface effectFunding information
The study did not have sponsorship.
References
- Ватульян, А.О., Нестеров, С.А., Юров, В.О., Исследование напряженно-деформированного состояния полого цилиндра с покрытием на основе градиентной модели термоупругости. Вестник Пермского национального исследовательского политехнического университета. Механика, 2021, № 4, с. 60–70. [Vatulyan, А.О., Nesterov, S.А., Yurov, V.О., Investigation of the stress-strain state of a hollow cylinder with a coating based on the gradient model of thermoelasticity. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika = PNRPU Mechanics Bulletin, 2021, no. 4, pp. 60–70. (in Russian)] DOI: 10.15593/perm.mech/2021.4.07
- Ватульян, А.О., Нестеров, С.А., Градиентная модель изгиба составной балки. Экологический вестник научных центров Черноморского экономического сотрудничества, 2022, т. 19, № 2, с. 6–16. [Vatulyan, A.O., Nesterov, S.A., Gradient model of bending of a composite beam. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2022, vol. 19, no. 2, pp. 6–16. (in Russian)] DOI: 10.31429/vestnik-19-2-6-16
- Biot, M.A., Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. The Journal of the Acoustical Society of America, 1956, vol. 28, no. 2, pp. 168–178. DOI: 10.1121/1.1908239
- Nunziato, J.W., Cowin, S.C., A nonlinear theory of elastic materials with voids. Archive for Rational Mechanics and Analysis, 1979, vol. 72, no. 2, pp. 175–201. DOI: 10.1007/BF00249363
- Cowin, S.C., Nunziato, J.W., Linear elastic materials with voids. Journal of Elasticity, 1983, vol. 13, no. 2, pp. 125–147. DOI: 10.1007/BF00041230
- Birsan, M., Altenbach, H., On the theory of porous elastic rods. International. Journal of Solids and Structures, 2011, vol. 48, no. 6, pp. 910–924. DOI: 10.1016/J.IJSOLSTR.2010.11.022
- Lyapin, A.A., Vatulyan, A.O., On deformation of porous plates. ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik, 2018, vol. 98, no. 6, pp. 330–340. DOI: 10.1002/zamm.201700151
- Cowin, S.C., A note on the problem of pure bending for linear elastic materials with voids. Journal of Elasticity, 1984, vol. 14, pp. 227–233. DOI: 10.1007/BF00041670
- Cowin, S.C., Puri, P., The classical pressure vessel problems for linear elastic materials with voids. Journal of Elasticity, 1983, vol. 13, pp. 157–163. DOI: 10.1007/BF00041232
- Iesan, D., Scalia, A., On the Deformation of Functionally Graded Porous Elastic Cylinders. Journal of Elasticity, 2007, vol. 87, pp. 147–159. DOI: 10.1007/s10659-007-9101-9
- Scalia, A., Sumbatyan, M.A., Contact problem for porous elastic half-plane. Journal of Elasticity, 2000, vol. 60, no. 2, pp. 91–102. DOI: 10.1023/A:1010880823544
- Колосова, Е.М., Чебаков, М.И., Аналитическое решение осесимметричной контактной задачи для пороупругого слоя. Известия Российской академии наук. Механика твердого тела, 2020, № 6, с. 116–124. [Kolosova, E.M., Chebakov, M.I., Analytical Solution of Axisymmetric Contact Problem for a Poroelastic Layer. Mechanics of Solids, 2020, vol. 55, no. 6, pp. 857–864. DOI: 10.3103/S0025654420050118] DOI: 10.31857/S0572329920050116
- Зеленцов, В.Б., Загребнева, А.Д., Лапина, П.А., Айзикович, С.М., Ванг, Юн-Че, Относительный объем пор при идентировании пористых материалов. Проблемы прочности и пластичности, 2021, т. 83, № 4, с. 462–470. [Zelentsov, V.B., Zagrebneva, A.D., Lapina, P.A., Ayzikovich, S.M., Vang, Yun-Che, Relative pore volume in the identification of porous materials. Problemy prochnosti i plastichnosti = Problems of strength and ductility, 2021, vol. 83, no. 4, pp. 462–470. (in Russian)] DOI: 10.32326/1814-9146-2021-83-4-462-470
- Sha, M., Volkov, A.V., Orekhov, A.A., Kuznetsova, E.L., Micro-dilatation effects in a two-layered porous structure under uniform heating. Journal of the Balkan Tribological Association, 2021, vol. 27, no. 2, pp. 280–294.
- Ramezani, H., Steeb, H., Jeong, J., Analytical and numerical studies on penalized micro-dilatation (PMD) theory: macro-micro link concept. European Journal of Mechanics, A/Solids, 2012, vol. 34, pp. 130–148. DOI: 10.1016/J.EUROMECHSOL.2011.11.002
- Bishay, P.L., Sladek, J., Sladek, V., Gao, X.W., Analysis of elastic media with voids using a mixed-collocation finite-element method. Journal of Engineering Mechanics, 2017, vol. 143, no. 4. DOI: 10.1061/(ASCE)EM.1943-7889.0001193
- Iovane, G., Nasedkin, A.V., Finite element analysis of static problems for elastic media with voids. Computers and Structures, 2005, vol. 84, no. 1–2, pp. 19–24. DOI: 10.1016/j.compstruc.2005.09.002
- Sladek, J., Sladek, V., Repkaet, M., Bishay, P.L., Static and dynamic behavior of porous elastic materials based on micro-dilatation theory: A numerical study using the MLPG method. International Journal of Solids and Structures, 2016, vol. 96, pp. 126–135. DOI: 10.1016/j.ijsolstr.2016.06.016
- Chandrasekharaiah, D.S. Effects of surface stresses and voids on rayleigh waves in an elastic solid. International Journal of Engineering Science, 1987, vol. 25, no. 2, pp. 205–211. DOI: 10.1016/0020-7225(87)90006-1
- Lurie, S., Solyaev, Yu., Volkov, A., Volkov-Bogorodskiy, D., Bending problems in the theory of elastic materials with voids and surface effects. Mathematics and Mechanics of Solids, 2018, vol. 23, no. 5, pp. 787–804. DOI: 10.1177/1081286517691570
- Li, Y., Volkov, V.A., Rabinskiy, N.L., Shemiakov, O.A., Numerical modeling of scale effects for circular cylinder in the theory of thermoelastic materials with voids. Journal of Applied Engineering Science, 2020, vol. 18, no. 4, pp. 671–675. DOI: 10.5937/jaes0-28042
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Нестеров С.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.