On a cellular automata model of percolation in a porous medium
UDC
532.546:004.94EDN
RMWEIWDOI:
10.31429/vestnik-22-2-6-14Abstract
Models for the process of wetting and liquid percolation in porous structures have wide applications in various scientific and practical fields: geology and hydrogeology, geotechnical and hydrological engineering problems, production of porous composite materials, oil refining, ecology, agronomy, etc. Modeling of percolation with cellular automata is one of the approaches used to describe fluid behavior at the level of microscopic pores and connecting channels in porous media. In this work, we have implemented a spatial cellular automaton model for the process of liquid percolation in a porous medium with a given morphology, using a superposition of convection and diffusion operators, as well as took into account possible hydrophilic effects. We have created an application in Python language, which provides the ability to generate porous structures with given dimensions and ratio of the volume for the solid skeleton and pores, implementing the work of a cellular automata for given parameters and allows us to view the results of the 3D model, as well as the sections of the cellular array by different planes after a given number of iterations. We illustrated the capabilities of the model with the results of modeling the percolation for various structures, demonstrating qualitative correspondence to real processes. It should be noted that modeling liquid percolation using CA models can be computationally intensive and require significant amounts of computing resources, especially when modeling large porous structures. It is also important to carefully define the transition rules and model parameters to achieve realistic results and consistency with experimental data.
Keywords:
porous medium, percolation, cellular automata, convection, diffusionFunding information
Fragments of the work were carried out with the support of the Scientific Research Center of the Russian Academy of Sciences (project 00-25-13 no. 125011200152-06).
References
- Biot, M.A., Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962, vol. 33(4), pp. 1482–1498.
- Burridge, R., Keller, J., Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am., 1981, vol. 70(4), pp. 1140–1146.
- Гольдберг, В.М. Скворцов, Н.П., Проницаемость и фильтрация в глинах. Москва, Недра, 1986. [Goldberg, V.M. Skvortsov, N.P., Pronitsaemost' i fil'tratsiya v glinakh = Permeability and filtration in clays. Moscow, Nedra, 1986. (in Russian)]
- Нигматулин, Р.И., Динамика многофазных сред. Ч. 1. Москва, Наука, 1987. [Nigmatulin, R.I., Dinamika mnogofaznykh sred. Ch. 1 = Dynamics of multiphase media. Pt. 1. Moscow, Nauka, 1987. (in Russian)]
- Ross, P.J., Efficient numerical methods for infiltration using Richards equation. Water Resources Research, 1990, vol. 26, iss. 2, pp. 279–290.
- Helmig, R., Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Berlin, Springer-Verlag, 1997.
- Hilfer, R., Macroscopic equations of motion for two-phase flow in porous media. Physical Review, 1998, vol. 58, iss. 2, pp. 2090–2096.
- Четверушкин, Б.Н., Морозов, Д.Н., Трапезникова, М.А., Чурбанова, Н.Г., Шильников, Е.В., Об одной схеме для решения задач фильтрации. Математическое моделирование, 2010, т. 22, № 4, с. 99–109. [Chetverushkin, B.N., Morozov, D.N., Trapeznikova, M.A., Churbanova, N.G., Shilnikov, E.V., On one scheme for solving filtration problems. Matematicheskoe modelirovanie = Mathematical Modeling, 2010, vol. 22, no. 4, pp. 99–109. (in Russian)]
- Бандман, О.Л., Клеточно-автоматный метод исследования свойств пористых сред. Сибирский журнал вычислительной математики, 2010, т. 13, № 1, c. 1–13. [Bandman, O.L., Cellular-automata method for studying the properties of porous media. Sibirskiy zhurnal vychislitel'noy matematiki = Siberian Journal of Computational Mathematics, 2010, vol. 13, no. 1, pp. 1–13. (in Russian)]
- Марков, С.И., Иткина, Н.Б., Многомасштабное моделирование процесса просачивания однофазного флюида в пористых средах. Сибирские электронные математические известия, 2018, т. 15, с. 115–134. [Markov, S.I., Itkina, N.B., Multiscale modeling of the process of percolation of a single-phase fluid in porous media. Sibirskie elektronnye matematicheskie izvestiya = Siberian Electronic Mathematical News, 2018, vol. 15, pp. 115–134. (in Russian)]
- Шурина, Э.П., Иткина, Н.Б., Марков, С.И., Математическое моделирование процесса просачивания многофазной жидкости в гетерогенных средах на базе вычислительной схемы разрывного метода Галеркина. Высокопроизводительные вычислительные системы и технологии, 2019, т. 3, № 2, с. 52–62. [Shurina, E.P., Itkina, N.B., Markov, S.I., Mathematical modeling of the process of percolation of a multiphase fluid in heterogeneous media based on the computational scheme of the discontinuous Galerkin method. Vysokoproizvoditel'nye vychislitel'nye sistemy i tekhnologii = High-performance Computing Systems and Technologies, 2019, v. 3, no. 2, pp. 52–62. (in Russian)]
- Степанов, С.П., Григорьев, А.В., Афанасьева, Н.М., Численное моделирование процесса просачивания в трещиновато-пористый грунт в условиях крайнего севера. Математические заметки СВФУ, 2020, т. 27, № 2, с. 105–115. [Stepanov, S.P., Grigoriev, A.V., Afanasyeva, N.M., Numerical modeling of the seepage process in cracked-porous soil in the conditions of the far north. Matematicheskie zametki SVFU = Mathematical notes of NEFU, 2020, vol. 27, no. 2, pp. 105–115. (in Russian)]
- Crampin, S., Gao, Yu., The new geophysics and the future of international workshops on seismic anisotropy. Journal of Seismic Exploration, 2007, vol. 16(2), pp. 1–10.
- Wang, Y., Wang, S., Xue, Sh., Adhikary, D., Numerical modeling of porous flow in fractured rock and its applications in geothermal energy extraction. Journal of Earth Science, 2015, vol. 26, iss 1, pp. 020–027.
- Nabovati, A., Sousa, A.C.M., Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method. Journal of Engineering Science and Technology, 2007, vol. 2, pp. 226–237.
- Ramirez, A., Jaramillo, D.E., Porous media generated by using an immiscible lattice-gas model. Computational Material Science, 2012, vol. 65, pp. 157–164.
- Бандман, О.Л., Клеточно-автоматное моделирование процесса просачивания жидкости через пористый материал. В Труды Междунар. конф. "Параллельные вычислительные технологии" (ПаВТ-2013). Челябинск, Изд. центр ЮУрГУ, 2013, с. 278–287. [Bandman, O.L., Cellular automata modeling of the process of liquid percolation through a porous material. In Trudy Mezhdunar. konf. "Parallel'nye vychislitel'nye tekhnologii" (PaVT-2013) = Proc. of the Int. Conf. "Parallel Computing Technologies" (PaVT-2013). Chelyabinsk, Publishing Center of SUSU, 2013, pp. 278–287. (in Russian)]
- Domasevich, M.A., Pavlova, A.V., Rubtsov, S.E., Telyatnikov, I.S., Cellular automata modeling of processes on landscape surfaces using triangulation meshes. In IOP Conference Series: Earth and Environmental Science, 2021, vol. 867(1), art. 012017.
- Domain Specific Language and Translator for Cellular Automata Models of Physico-Chemical Processes. In Proc. of PaCT-2011, Lecture Notes in Computer Science 6873, 2011. Berlin, Springer, pp. 172–177.
- Toffolli, T., Margolus, N., Cellular Automata Machines: A New Environment for Modeling. Cambridge, MIT Press, 1987.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2025 Рубцов С.Е., Телятников И.С., Павлова А.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.