Asymptotic method application for analysis of the crack structuring in a viscoelastic layer problem
UDC
539.3Abstract
This paper presents an asymptotic method application in the problem of identification of the rectilinear small sized crack in the viscoelastic layer. Formulas for calculation of the wave field in the layer based on the boundary integral equations method and its discrete version (i.e. method of boundary elements) and also asymptotic formulas for amplitudes of oscillations are obtained. The paper proposes an identification method of the crack parameters via set amplitudes of displacements on a part of the upper border. The computing experiments conducted on the reconstruction model made it possible to determine borders of applicability of the proposed method.
Keywords:
viscoelastic, identification, cracksFunding information
Работа выполнена при поддержке Министерства образования и науки РФ (ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009-2013 годы, госконтракт №П596) и РФФИ (10-01-00194).
References
- Ватульян А.О., Соловьев А.Н. Обратные задачи теории трещин в твердых телах //Известия вузов. Северо-Кавказ. регион. Математика и механика сплошной среды. Естественные науки. Спецвыпуск. 2004. С. 74-80.
- Ватульян А.О. Об определении конфигурации трещины в анизотропной среде // ПММ. 2004. №1. С. 192-200.
- Глушков Е.В., Глушкова Н.В., Голуб М.В. Дифракция упругих волн на наклонной трещине в слое // ПММ. 2007. Т. 71. Вып. 4. С. 702-715.
- Глушков Е.В., Глушкова Н.В., Кривонос А.С. Возбуждение и распространение упругих волн в многослойных анизотропных композитах // ПММ. 2010. Т. 74. Вып. 3. С. 419-432.
- Wang L., Yuan F.G. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments // Compos. Sci. and Technol. 2007. Vol. 67. No 8. P. 1370-1384.
- Ландау Л.Д., Лифшиц Е.М. Теория упругости. Т. VII. М.: Наука, 1978. 248 с.
- Кристенсен Р. Введение в теорию вязкоупругости. М.: Мир, 1974. 338 с.
- Ватульян А.О., Азарова П.А., Явруян О.В. Идентификация параметров наклонной прямолинейной трещины в вязкоупругом слое // Механика композиционных материалов и конструкций. 2008. Т. 14. №3. С. 461-472.
- Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
- Ватульян А.О., Явруян О.В. Асимптотический подход в задачах идентификации трещин // ПММ. 2006. №4. С. 714-724.
- Ворович И.И., Бабешко В.В. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с.
- Белоцерковский С.М., Лифанов И.К. Численные методы в сингулярных интегральных уравнениях и их применение в аэродинамике, теории упругости, электродинамике. М.: Наука, 1985. 253 с.
- Iovane G., Lifanov I.K., Sumbatyan M.A. On direct numerical treatment of hypersingular integral equations arising in mechanics and acoustics // Acta Mechanica. 2003. No 162. Р. 99-110.
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2011 Ватульян А.О., Лапина П.А.

This work is licensed under a Creative Commons Attribution 4.0 International License.