On the dispersion relations for a hollow cylinder within inhomogeneous residual stress field
UDC
539.3Abstract
Identification of residual stresses is one of the most important technical problems allowing estimating correctly a resource of designs. Nowadays there are several ways to estimate the level of residual stress state, among them the most economic and simple one is the acoustic method connected with the measurement of velocities of elastic waves. The waves in the hollow elastic inhomogeneous cylinder with free boundary are considered in the presence of fields of residual stress of various structure (inflating, stretching, torsion). The defining relation of problems on deformation of elastic bodies with residual stresses is nonlinear; the linearized Trefftz model is used. The structure of dispersive multiplicity of a problem is studied. The analysis of standing waves has allowed to establish, that for any laws of change of residual stresses exists three set of the dispersive curves, differing movement kinematics. Fields of an abnormal dispersion are found. Some features of a structure of dispersive curves are revealed, influence on them of type of residual stresses is investigated. On the basis of a method of disturbances the formulas characterizing linear sites of dispersive curves and the formula, reflecting change of a dispersive picture in a vicinity of resonances of various type are received. The numerical and analytical research, allowed to establish degree of influence of type residual stresses and its amplitudes on structure a component of dispersive set and change of velocities of extending modes is carried out.
Keywords:
residual stresses, waves, inhomogeneous cylinder, dispersion relations, asymptotic analysisFunding information
Работа выполнена при поддержке гранта РФФИ (13-01-00196-а).
References
- Углов А.Л., Ерофеев В.И., Смирнов А.Н. Акустический контроль оборудования при изготовлении и эксплуатации. М.: Наука, 2009. 280 с. [Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskiy kontrol' oborudovaniya pri izgotovlenii i ekspluatatsii [Acoustic testing equipment during manufacturing and operation]. Moscow, Nauka Publ., 2009, 280 p. (In Russian)]
- Никитина Н.Е. Акустоупругость. Опыт практического применения. Нижний Новгород: Издательство ТАЛАМ, 2005. 208 с. [Nikitina N.E. Akustouprugost'. Opyt prakticheskogo primeneniya [Acoustoelasticity. Practical experience]. Nizhniy Novgorod, Talam Publ., 2005, 208 p. (In Russian)]
- Trefftz E. Zur theorie der stabilität des elastischen gleichgewichts // ZAMM. 1933. Vol. 12. No. 2. P. 160-165.
- Гузь А.Н., Махорт Ф.Г., Гуща О.И. Введение в акустоупругость. Киев: Наукова думка, 1977. 162 с. [Guz' A.N., Makhort F.G., Gushcha O.I. Vvedenie v akustouprugost' [Introduction to acoustoelasticity]. Kiev, Naukova dumka Publ., 1977, 162 p. (In Russian)]
- Ватульян А.О., Дударев В.В., Недин Р.Д. Предварительные напряжения: моделирование и идентификация. Ростов-на-Дону, Издательство ЮФУ, 2014. 206 с. [Vatul'yan A.O., Dudarev V.V., Nedin R.D. Predvaritel'nye napryazheniya: modelirovanie i identifikatsiya [Prestressing: modeling and identification]. Rostov-na-Donu, SFEDU Publ., 2014. 206 p. (In Russian)]
- Ватульян А.О., Недин Р.Д. Модели предварительного напряженного состояния и принципы его идентификации // Итоги науки. Юг России Математический форум. Т. 8, ч. 2. Исследования по дифференциальным уравнениям, математическому моделированию и проблемам математического образования. Владикавказ: ЮМИ ВНЦ и РСО-А, 2014. С. 32-52. [Vatul'yan A.O., Nedin R.D. Modeli predvaritel'nogo napryazhennogo sostoyaniya i printsipy ego identifikatsii [Models of pre-stressed state and the principles of identification]. In Itogi nauki. Yug Rossii Matematicheskiy forum. T. 8, ch. 2. Issledovaniya po differentsial'nym uravneniyam, matematicheskomu modelirovaniyu i problemam matematicheskogo obrazovaniya [Results of science. South Russian Math Forum. Vol. 8. Ch. 2. Research on differential equations, mathematical modeling and mathematical education problems]. Vladikavkaz, YuMI VNTs i RSO-A, 2014, pp. 32-52. (In Russian)]
- Bazant Z.P. A correlation study of formulations of incremental deformation and stability of continuous bodies // J. Appl. Mech. 1971. Vol. 38. P. 919-928.
- Калинчук В.В., Белянкова Т.И. Динамика поверхности неоднородных сред. М.: Физматлит, 2009. 312 с. [Kalinchuk V.V., Belyankova T.I. Dinamika poverkhnosti neodnorodnykh sred [The dynamics of the surface of heterogeneous environments]. Moscow, Fizmatlit Publ., 2009, 312 p. (In Russian)]
- Зубов Л.М. Теория малых деформаций предварительно напряженных тонких оболочек // ПММ. 1976. Т. 40. № 1. С. 85-95. [Zubov L.M. Teoriya malykh deformatsiy predvaritel'no napryazhennykh tonkikh obolochek [The theory of small deformations of prestressed thin shells]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1976, vol. 40, no. 1, pp. 85-95. (In Russian)]
- Pochhammer L. Über die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder // J. Reine Angew. Math. 1876. Vol. 81. P. 324-336.
- Chree C. Longitudinal vibrations of a circular bar // J. Quart. Pure Appl. Math. 1886. Vol. 21. P. 287-298.
- Гринченко В.Т., Мелешко В.В. Гармонические колебания и волны в упругих телах. М.: Наука, 1981. 282 с. [Grinchenko V.T., Meleshko V.V. Garmonicheskie kolebaniya i volny v uprugikh telakh [Harmonic waves in elastic bodies]. Moscow, Nauka Publ., 1981, 282 p. (In Russian)]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey [Dynamic mixed problem of elasticity theory for nonclassical fields]. Moscow, Nauka Publ., 1979, 320 p. (In Russian)]
- Гетман И.П., Устинов Ю.А. Математическая теория нерегулярных твердых волноводов. Ростов-на-Дону: Изд-во Рост. ун-та, 1993. 144 с. [Getman I.P., Ustinov Yu.A. Matematicheskaya teoriya neregulyarnykh tverdykh volnovodov [The mathematical theory of irregular waveguides solid]. Rostov-on-Don, Izdatelstvo Rostovskogo univesiteta Publ., 1993, 144 p. (In Russian)]
- Найфе А.Х. Методы возмущений. М.: Мир, 1976. 454 с. [Nayfe A.Kh. Metody vozmushcheniy [The Perturbation methods]. Moscow, Mir Publ., 1976, 454 p. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2015 Ватульян А.О., Юров В.О.
This work is licensed under a Creative Commons Attribution 4.0 International License.