Features of the directional patterns of bulk elastic waves excited by a surface harmonic source in an anisotropic piezoelectric half-space

Authors

  • Syromyatnikov P.V. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
  • Kirillova E.V. RheinMain University of Applied Sciences in Wiesbaden, Wiesbaden, Germany
  • Krivosheeva M.A. Kuban State University, Krasnodar, Russian Federation
  • Lapina O.N. Kuban State University, Krasnodar, Russian Federation
  • Nesterenko A.G. Kuban State University, Krasnodar, Russian Federation
  • Nikitin Yu.G. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-17-4-14-24

Abstract

On the basis of the stationary phase method and the saddle method in the proposed work, a numerical-analytical method was developed for constructing the asymptotics of elastic and electroelastic bulk waves, which are excited by a surface harmonic mechanical or electric delta source in a piezoelectric half-space. The anisotropy of elastic moduli, piezoelectric coefficients and dielectric constants can be arbitrary. An important element of the method is an algorithm for constructing the Fourier symbol of the Green's matrix of a piezoelectric half-space. Lithium niobate was chosen as a specific material for calculations. We calculated the directional patterns of the amplitudes of longitudinal and quasi-transverse waves in the symmetry plane of the Y-cut of lithium niobate, which are excited by three concentrated mechanical and electrical sources. For the plane of symmetry, six caustics of quasi-transverse waves were found, which are determined by degenerate stationary points. The range of ambiguity of asymptotic representations of quasi-transverse waves polarized in the plane of symmetry was found. The nature of ambiguity for bulk waves is similar to the analogous phenomenon for surface elastic waves in anisotropic media. In the absence of the piezoelectric effect, as well as in the case of a distributed source, the method does not require modification.

Keywords:

anisotropic half-space, piezoelectricity, Green's matrix, surface delta source, radiation patterns, caustics, multivalued solutions

Funding information

Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2020 г. (№ г.р. 01201354241).

Author info

  • Pavel V. Syromyatnikov

    д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики краснодарского отделения Южного научного центра РАН, профессор кафедры математического моделирования Кубанского государственного университета

  • Evgenia V. Kirillova

    канд. физ.-мат. наук, профессор Университета прикладных наук Рейн Майн в г. Висбаден

  • Margarita A. Krivosheeva

    магистрант второго года обучения кафедры математического моделирования Кубанского государственного университета

  • Olga N. Lapina

    канд. физ.-мат. наук, доцент кафедры вычислительных технологий Кубанского государственного университета

  • Alexandr G. Nesterenko

    канд. физ.-мат. наук, доцент кафедры физики информационных систем Кубанского государственного университета

  • Yuri G. Nikitin

    канд. физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

References

  1. Активная сейсмология с мощными вибрационными источниками / Отв. ред. Г.М. Цибульчик. Новосибирск: ИВМиМГ СО РАН, Филиал "Гео" Издательства СО РАН, 2004. 387 с. [Cibulchik, G.M. (ed.) Aktivnaya seysmologiya s moshchnymi vibratsionnymi istochnikami [Active seismology with powerful vibration sources]. ICM & mg SB RAS, Branch ``Geo'' Publishing house SB RAS, Novosibirsk, 2004. (In Russian)]
  2. Royer D., Dielesant E. Elastic waves in solids II. Generation, Acousto-optic Interaction, Applications. Springer, 2000. 474 p.
  3. Кузнецов В.М., Жуков А.П., Шнеерсон М.Б. Введение в сейсмическую анизотропию: теория и практика. М: Технологии сейсморазведки, 2006. 159 с. [Kuznetsov, V.M., Zhukov A.P., Schneerson M.B. Vvedenie v seysmicheskuyu anizotropiyu: teoriya i praktika [Introduction to seismic anisotropy: theory and practice]. Technologies of seismic exploration, Moscow, 2006. (In Russian)]
  4. Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с.
  5. Musgrave M.S., Payton R.G. Criteria for elastic waves in anisotropic media – a consolidation // J. of Elasticity. 1984. Vol. 14. Iss. 3. P. 269–287.
  6. Karmazin А., Syromyatnikov P. et al. A study of time harmonic guided Lamb waves and their caustics in composite plates // Ultrasonics. 2013. Vol. 53. Iss. 1. P. 283–293.
  7. Бабешко В.А., Сыромятников П.В. Метод построения символа Фурье матрицы Грина многослойного электроупругого полупространства // Изв. РАН. Механика твердого тела. 2002. № 5. С. 35–47. [Babeshko, V.A., Syromyatnikov P.V. Metod postroeniya simvola Fur'e matritsy Grina mnogosloynogo elektrouprugogo poluprostranstva [Method of constructing the Fourier symbol of the green matrix of a multilayer electroelastic half-space]. Izvestiya RAN. Mekhanika tverdogo tela [Solid state mechanics], 2002, no. 5, pp. 35–47. (In Russian)]
  8. Федорюк М.В. Метод перевала. М.: Наука, 1977. 386 с. [Fedoryuk, M.V. Metod perevala [Saddle-Point Method]. Nauka, Moscow, 1977. (In Russian)]

Downloads

Issue

Pages

14-24

Section

Mechanics

Dates

Submitted

November 25, 2020

Accepted

December 8, 2020

Published

December 27, 2020

How to Cite

[1]
Syromyatnikov, P.V., Kirillova, E.V., Krivosheeva, M.A., Lapina, O.N., Nesterenko, A.G., Nikitin, Y.G., Features of the directional patterns of bulk elastic waves excited by a surface harmonic source in an anisotropic piezoelectric half-space. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 4, pp. 14–24. DOI: 10.31429/vestnik-17-4-14-24

Similar Articles

1-10 of 297

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>