Construction of a discrete topological self-assembly space for packed block elements simulating nanoparticles
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-19-3-38-46Abstract
The theory of block elements of boundary value problems for partial differential equations has found a number of applications in seismology, strength and fracture theory, and materials science. The theory of fractals developed by B. Mandelbrot is another area in which block elements could act as simulators of nanoparticles - self-similar deformable objects. Previously published papers present a model of self-organization of nanoparticles based on block elements. In this paper, we consider the issue of self-assembly nanoparticles, which combine to form large objects. This study is based on the previously established property of block elements to form a discrete topological space. The property inherent in deformable stamps is also used to generate resonances of vibrations in a plane tangent to the boundary of the layered medium. These properties make it possible to simulate the self-assembly of nanoparticles.
Keywords:
nanoparticles, self-assembly, high-frequency resonances, discrete spectrum, block elementsAcknowledgement
References
- Бабешко, В.А., Евдокимова, О.В., Бабешко, O.M., Об одной механической модели самоорганизации наночастиц. МТТ, 2022, № 6, с. 12–18. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On one mechanical model of self-organization of nanoparticles. Mehanika tverdogo tela = Solid mechanics, 2022, no. 6, p. 12–18. (in Russian)] DOI: 10.31857/S0572329922060034
- Ворович, И.И., Спектральные свойства краевой задачи теории упругости для неоднородной полосы. ДАН СССР, 1979, т. 245, № 4, с. 817–820. [Vorovich, I.I., Spectral properties of the boundary value problem of elasticity theory for an inhomogeneous strip. Doklady akademii nauk SSSR = Proc. of the Academy of Sciences of the USSR, 1979, vol. 245, no. 4, pp. 817–820. (in Russian)]
- Ворович, И.И., Резонансные свойства упругой неоднородной полосы. ДАН СССР, 1979, т. 245, № 5, с. 1076–1079. [Vorovich I.I. Resonance properties of an elastic inhomogeneous band. Doklady akademii nauk SSSR = Proc. of the Academy of Sciences of the USSR, 1979, vol. 245, no. 5, pp. 1076–1079. (in Russian)]
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., О контактных задачах с деформируемым штампом. Проблемы прочности и пластичности. 2022. Т. 84, №1. С. 25–34. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On contact problems with a deformable stamp. Problemy prochnosti i plastichnosti = Problems of strength and plasticity, 2022, vol. 84, no. 1, pp. 25–34. (in Russian)] DOI: 10.32326/1814-9146-2022-84-1-25-34
- Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., О блочных элементах в слоистых средах с рельефной границей. Doklady akademii nauk = Proc. of the Academy of Sciences, 2010, т. 435, №1, с. 29–34. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On block elements in layered media with a relief boundary. 2010, vol.435, no. 1, pp. 29–34. (in Russian)]
- Бабешко, В.А., Бабешко, О.М., Евдокимова, О.В., О слоистых упругих средах с рельефной границей. Известия РАН. Прикладная математика и механика, 2010, № 6, С. 890–894. [Babeshko, V.A., Babeshko, O.M., Evdokimova, O.V., On layered elastic media with a relief boundary. Izvestiya RAN. Prikladnaya matematika i mekhanika = Proc. of the Russian Academy of Sciences. Applied Mathematics and Mechanics, 2010, no. 6, pp. 890–894. (in Russian)]
- Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On a mechanical approach to the prediction of earthquakes during horizontal motion of litospheric plates. Acta Mechanica, 2018, vol. 229, iss. 11, pp. 4727–4739. DOI: 10.1007/s00707-018-2255-7
- Гринченко, В.Т., Улитко, А.Ф., Равновесие упругих тел канонической формы. Киев, Наукова Думка, 1985. [Grinchenko, V.T., Ulitko, A.F., Ravnovesie uprugikh tel kanonicheskoy formy = Equilibrium of elastic bodies of canonical form. Kyiv, Naukova Dumka, 1985. (in Russian)]
- Головчан, В.Т., Кубенко, В.Д., Шульга, Н.А., Гузь, А.Н., Гринченко, В.Т., Динамика упругих тел. Киев, Наукова Думка, 1986. [Golovchan, V.T., Kubenko, V.D., Shulga, N.A., Guz, A.N., Grinchenko, V.T., Dinamika uprugikh tel = Dynamics of elastic bodies. Kyiv, Naukova Dumka, 1986. (in Russian)]
- Ворович, И.И., Бабешко, В.А., Пряхина, О.Д., Динамика массивных тел и резонансные явления в деформируемых средах. Москва, Научный мир, 1999. [Vorovich, I.I., Babeshko, V.A., Pryakhina, O.D., Dinamika massivnykh tel i rezonansnye yavleniya v deformiruemykh sredakh = Dynamics of massive bodies and resonance phenomena in deformable media. Moscow, Scientific world, 1999. (in Russian)]
- Бабешко, В.А., Кириллова, Е.В, Бабешко, О.М., Евдокимова, О.В., Хрипков, Д.А., Евдокимов, В.С., Зарецкий, А.Г., О дискретизации топологических пространств блочных элементов с разными граничными условиями для трещин нового типа. Экологический вестник научных центров Черноморского экономического сотрудничества, 2021, т. 18, № 4, с. 14–22. [Babeshko, V.A., Kirillova, E.V., Babeshko, O.M., Evdokimova, O.V., Khripkov, D.A., Evdokimov, V.S., Zaretsky, A.G., On discretization topological spaces of block elements with different boundary conditions for cracks of a new type. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 4, pp. 14–22. (in Russian)] DOI: 10.31429/vestnik-18-4-14-22
Downloads
Submitted
Published
How to Cite
Copyright (c) 2022 Babeshko V.A., Khripkov D.A., Evdokimov V.S., Babeshko O.M., Evdokimova O.V.
This work is licensed under a Creative Commons Attribution 4.0 International License.