Model of distribution of pollutant substances in a multilayered medium with a periodic radiation source
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-16-3-54-62Abstract
Based on the equations of turbulent diffusion for convection-diffusion-decay processes, an algorithm has been developed for calculating the distribution of pollutants in a diffusion medium that are emitted by a time-periodic radiation source. The medium is a multilayer packet of layers with plane-parallel interfaces, the radiation source can be located either at the boundaries of the packet of layers or inside it. The solution is constructed in Fourier images using the symbols of the Green functions of boundary value problems for periodic sources. The inverse two-dimensional Fourier transform is calculated numerically. It is shown in the paper that the boundary value problem for a periodic source can be reduced to solving a slightly modified boundary value problem for stationary equations of turbulent diffusion. Methods for solving a stationary boundary value problem are developed in detail in previous works of the authors. It is noted that for a periodic source, in comparison with a stationary source, the computational volumes grow in proportion to the number of harmonics in the Fourier expansion of the periodic component of the source. An example of a numerical solution of the spatial boundary-value problem for a two-layer packet with an internal periodic radiation source is given. The example takes into account nine members of the Fourier series in the source statement. The developed numerical-analytical model has high accuracy and flexibility and can be used to simulate various periodic diffusion-convection-reaction processes, and to obtain various estimates in the field of ecology and environmental protection. The proposed method is effective for solving boundary value problems for semi-bounded multilayer media for which the traditionally used finite element and finite difference methods are not applicable.
Keywords:
turbulent diffusion, multilayered medium, periodic radiation source, Green's function, Fourier transform, numerical integrationFunding information
This work was carried out as part of the implementation of the State Project of the UNC RAS for 2019 (No. 01201354241) with partial support from a grant from the Russian Foundation for Basic Research and Administration of the Krasnodar Territory (project 19-41-230011 r_a).
References
- Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции-диффузии. М.: Книжный дом. Либроком, 2015. 248 с. [Samarskii, A.A., Vabishchevich, P.N. Chislennye metody resheniya zadach konvektsii-diffuzii [Numerical methods for solving convection-diffusion problems]. Knizhnyy dom "Librokom", Moscow, 2015. (In Russian)]
- Hundsdorfer W.H., Verwer J.G. Numerical solution of time-dependent advection-diffusion-reaction equations. Springer, Berlin, 2003. 472 p.
- Mickens R.E. (ed.) Advances in the applications of nonstandard finite difference schemes. World Scientific Publishing Co Pte Ltd, New Jersey, 2005. 665 p.
- Тимонин А.С. Инженерно-экологический справочник. В 3-х томах. Калуга: Изд-во Н. Бочкаревой, 2003. 2825 с. [Timonin A.S. Inzhenerno-ekologicheskiy spravochnik [Environmental Engineering Handbook]. Publishing House N. Bochkareva, Kaluga, 2003. (In Russian)]
- Сыромятников П.В. Матричный метод построения символа функции Грина для стационарных задач турбулентной диффузии в многослойных средах // Экологический вестник научных центров Черноморского экономического сотрудничества. 2018. Т. 15. № 3. C. 62–71. DOI: 10.31429/vestnik-15-3-62-71. [Syromyatnikov P.V. Matrichnyy metod postroeniya simvola funktsii Grina dlya statsionarnykh zadach turbulentnoy diffuzii v mnogosloynykh sredakh [Matrix method for constructing the symbol of the Green's function for stationary problems of turbulent diffusion in multilayer media]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation], 2018, vol. 15. no, 3, pp. 62—1. DOI: 10.31429/vestnik-15-3-62-71 (In Russian)]
- Сыромятников П.В. Матричный метод решения нестационарных задач конвекции — диффузии в полуограниченных многослойных и градиентных средах // Наука Юга России. 2018. Т. 14. № 4. С. 3–13. DOI: 10.7868/S25000640180401. [Syromyatnikov P.V. Matrichnyy metod resheniya nestatsionarnykh zadach konvektsii — diffuzii v poluogranichennykh mnogosloynykh i gradientnykh sredakh [A matrix method for solving non-stationary convection-diffusion problems in semibounded multilayer and gradient media]. Nauka Yuga Rossii [Science In The South of Russia], 2018, vol. 14. no 4, pp. 3—. DOI: 10.7868/S25000640180401 (In Russian)]
- Бартеньев О.В. Фортран для профессионалов. Математическая библиотека IMSL. Вып. 3. М.: Диалог-МИФИ. 2001. 364 с. [Bartenev O.V. Fortran dlya professionalov. Matematicheskaya biblioteka IMSL [Fortran for professionals. Mathematical Library IMSL]. Iss. 3. Dialog-MEPhI, Moscow, 2001. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2019 Сыромятников П.В., Кривошеева М.А., Нестеренко А.Г., Лапина О.Н.
This work is licensed under a Creative Commons Attribution 4.0 International License.