Modeling of Non-Stationary Diffusion Processes - Convections - Reactions in Multi-Layer Half-Spaces and Connected Half-Spaces

Authors

  • Syromyatnikov P.V. Kuban State University, Krasnodar, Russian Federation
  • Krivosheeva M.A. Kuban State University, Krasnodar, Russian Federation
  • Lapina O.N. Kuban State University, Krasnodar, Russian Federation
  • Nesterenko A.G. Kuban State University, Krasnodar, Russian Federation
  • Nikitin Yu.G. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

EDN

YMPUYW

DOI:

10.31429/vestnik-17-1-1-30-41

Abstract

A matrix method is developed for constructing the Fourier-Laplace symbol of the Green's function for a multilayer half-space and linked half-spaces for three-dimensional non-stationary problems of turbulent diffusion. The sources of emission of impurities can be external or internal, the number of considered layers can be large. The method allows solving boundary-value convection-diffusion-decay problems not only for piecewise constant media, but also for gradient media, all parameters of which depend on the vertical coordinate by discretization with a small vertical step. The multilayer half-space model is a better physical model of the atmosphere than the multilayer packet of layers, since the decrease in concentration in the upper layers in the half-space is caused not by the introduction of special boundary conditions, but by the natural decrease of the solution at infinity for half-space.

It is shown that for a boundary value problem of the third kind for a homogeneous half-space in the non-stationary case, the occurrence of real poles is possible, as well as in the stationary case. For the case of the occurrence of real poles, a method for determining the correct integration contour for the Laplace transform is indicated.

The proposed method for the numerical inversion of three-dimensional Fourier-Laplace integrals based on standard algorithms for integrating rapidly oscillating functions is very effective, which allows us to solve not only direct, but also some inverse problems of turbulent diffusion.

The given example of the numerical solution of a three-dimensional non-stationary problem for two linked half-spaces can be considered as a model of impurity propagation at the boundary of the atmosphere and the ocean.

Keywords:

3D non-stationary turbulent diffusion-convection-decay, boundary value problems, multilayer half-space, Fourier and Laplace transforms, Green’s function symbol, numerical integration

Funding information

This work was carried out as part of the implementation of the State Assignment of the Southern Scientific Center of the Russian Academy of Sciences for 2020 (No. 01201354241) with partial support from a grant from the Russian Foundation for Basic Research and Administration of the Krasnodar Territory (project 19-41-230011 р_а).

Authors info

  • Pavel V. Syromyatnikov

    д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики краснодарского отделения Южного научного центра РАН, профессор кафедры математического моделирования Кубанского государственного университета

  • Margarita A. Krivosheeva

    магистрант второго года обучения кафедры математического моделирования Кубанского государственного университета

  • Olga N. Lapina

    канд. физ.-мат. наук, доцент кафедры вычислительных технологий Кубанского государственного университета

  • Aleksandr G. Nesterenko

    канд. физ.-мат. наук, доцент кафедры физики информационных систем Кубанского государственного университета

  • Yuri G. Nikitin

    канд. физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

References

  1. Бекман И.Н. Высшая математика: математический аппарат диффузии. М.: Издательство Юрайт, 2018. 397 с. [Beckman, I.N. Higher mathematics: the mathematical apparatus of diffusion. Yurayt Publishing House, Moscow, 2018. (In Russian)]
  2. Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции-диффузии. М.: Книжный дом "Либроком", 2015. 248 с. [Samarsky, A.A., Vabishchevich, P.N. Numerical methods for solving convection-diffusion problems. Book House Librocom, Moscow, 2015. (In Russian)]
  3. Hundsdorfer W.H., Verwer J.G. Numerical solution of time-dependent advection-diffusion reaction equations. Springer, Berlin, 2003. 472 p.
  4. Эйдерман В.Я. Основы теории функций комплексного переменного и операционного исчисления. М.: ФИЗМАТЛИТ, 2002. 256 с. [Eiderman, V.Ya. Fundamentals of the theory of functions of a complex variable and operational calculus. FIZMATLIT, Moscow, 2002. (In Russian)]
  5. Международная библиотека математических подпрограмм IMSL URL: https://www.roguewave.com/products-services/imsl-numerical-libraries (дата обращения: 30.01.2020). [International library of mathematical routines IMSL. Available at: https://www.roguewave.com/products-services/imsl-numerical-libraries (accessed 01.30.2020).]
  6. The NAG Fortran Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom. URL: https://www.nag.com (дата обращения: 30.01.2020).
  7. Сыромятников П.В. Матричный метод решения нестационарных задач конвекции-диффузии в полуограниченных многослойных и градиентных средах // Наука Юга России. 2018. Т. 14. № 4. С. 3–13 DOI: 10.7868/S25000640180401 [Syromyatnikov, P.V. Matrichnyy metod resheniya nestatsionarnykh zadach konvektsii-diffuzii v poluogranichennykh mnogosloynykh i gradientnykh sredakh [The matrix method for solving unsteady convection-diffusion problems in semi-bounded multilayer and gradient media]. Nauka Yuga Rossii [Science of the South of Russia], 2018, vol. 14, no. 4, pp. 3–13. DOI: 10.7868/S25000640180401 (In Russian)]
  8. Сыромятников П.В., Кривошеева М.А., Лапина О.Н., Нестеренко А.Г., Никитин Ю.Г. Стационарные процессы диффузии-конвекции-распада в однородном полупространстве // Экологический Вестник научных центров Черноморского экономического сотрудничества. 2019. Т. 16. № 4. C. 31–42. DOI: 10.31429/vestnik-16-4-31-42 [Syromyatnikov, P.V., Krivosheeva, M.A., Lapina, O.N., Nesterenko, A.G., Nikitin, Yu.G. Statsionarnye protsessy diffuzii-konvektsii-raspada v odnorodnom poluprostranstve [Stationary processes of diffusion-convection-decay in a homogeneous half-space]. Ekologicheskiy Vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of the BSEC Scientific Centers], 2019, vol. 16, no. 4, pp. 31–42. DOI: 10.31429/vestnik-16-4-31-42 (In Russian)]
  9. Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. М.: ЛКИ, 2009. 480 с. [Samarsky, A.A., Vabishchevich, P.N. Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki [Numerical methods for solving inverse problems of mathematical physics]. LCI, Moscow, 2009. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

30-41

Section

Mechanics

Dates

Submitted

February 2, 2020

Accepted

February 29, 2020

Published

March 31, 2020

How to Cite

[1]
Syromyatnikov, P.V., Krivosheeva, M.A., Lapina, O.N., Nesterenko, A.G., Nikitin, Y.G., Modeling of Non-Stationary Diffusion Processes - Convections - Reactions in Multi-Layer Half-Spaces and Connected Half-Spaces. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, т. 17, № 1, pp. 30–41. DOI: 10.31429/vestnik-17-1-1-30-41

Similar Articles

1-10 of 1092

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>