On the study of dynamic problems for layered-structured media with discontinuous boundary condition
UDC
539.3EDN
WWXSLZDOI:
10.31429/vestnik-18-3-26-34Abstract
The problems of vibration for bodies with a single defect or with a system of defects under the effect of loads in various formulations are considered in numerous works by a number of authors. The discovery of the localization of vibration processes in the vicinity of plane inhomogeneities was led by V.A. Babeshko to the creation of a theory that studies various combinations of defects and their influence on the dynamic properties of layered elastic media.
The theory of vibration resistance viruses has wide applications in various fields, among which one of the most important is seismology.
The paper presents an approach for solving the problems of oscillation for multilayer media with a single defect or with a system of defects such as rigid inclusions under the effect of harmonic loads based of the theory of vibration resistance viruses proposed by V.A. Babeshko. The obtained functional-matrix relations for the characteristics of the stress-strain state of a layer package containing a set of plane inclusions serve as the basis for the construction of an integral equations system for contact stresses in the area of a stamp effect and stress surges on the edges of inclusions. Factorization methods can be used for solving integral equations (IE) and systems for some special cases of the stamp bottom and inclusion forms.
In this work, we present the solution of the integral equation for the scalar problem with a single inclusion using the fictitious absorption method, and show the results of the calculations for the real part of the vertical component of the stress jump amplitude vector for a rigid inclusion in a three-layer package with a clamped bottom edge.
Along with such fields as seismology and geophysics, which study the stress-strain state of geological structures, the presented approach can find applications in materials science, defectoscopy, engineering practice, etc.
Keywords:
layered-structured medium, vibration resistance virus, rigid inclusions, integral equation, fictitious absorption methodFunding information
Работа выполнена в рамках задания ГЗ ЮНЦ РАН, проект №~01201354241, отдельные результаты работы получены при поддержке РФФИ (проект 19-08-00145).
References
- Александров В.М., Сметанин Б.И., Соболь Б.В. Тонкие концентраторы напряжений в упругих телах. М.: Наука, 1993. 224 с. [Aleksandrov, V.M., Smetanin, B.I., Sobol, B.V. Tonkie koncentratory napryazhenij v uprugih telah [Thin stress concentrators in elastic bodies]. Nauka, Moscow, 1993. (In Russian)]
- Ватульян А.О., Соловьев А.Н. Идентификация плоских трещин в упругой среде // Экологический вестник научных центров Черноморского экономического сотрудичества. 2003. № 1. С. 23–28. [Vatul'yan, A.O., Solov'ev, A.N. Identifikaciya ploskih treshchin v uprugoj srede [Identification of plane cracks in an elastic medium]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2003, no. 1, pp. 23–28. (In Russian)]
- Глушков Е.В., Глушкова Н.В. Дифракция упругих волн на пространственных трещинах произвольной в плане формы // ПММ. 1996. Т. 60. Вып. 2. С. 282–289. [Glushkov, E.V., Glushkova, N.V. Difrakciya uprugih voln na prostranstvennyh treshchinah proizvol'noj v plane formy [Diffraction of elastic waves on spatial cracks of arbitrary shape]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1996, vol. 60, iss. 2, pp. 282–289. (In Russian)]
- Кит Г.С., Михаськив В.В., Хай О.М. Анализ установившихся колебаний плоского абсолютно жесткого включения в трехмерном упругом теле методом конечных элементов // ПММ. 2002. Т. 66. Вып. 5. C. 855–863. [Kit, G.S., Mihas'kiv, V.V., Khaj, O.M. Analiz ustanovivshihsya kolebanij ploskogo absolyutno zhestkogo vklyucheniya v trekhmernom uprugom tele metodom konechnyh elementov [Analysis of steady vibrations of a plane absolutely rigid inclusion in a three-dimensional elastic body by the finite element method]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 2002, vol. 66, iss. 5, pp. 855–863. (In Russian)]
- Antipov Y.A. A delaminated inclusion in the case of adhesion and slippage // J. Appl. Math. Mech. 1996. Iss. 60. P. 665–675.
- Fan T.Y. Continuum constitutive models and analytic solution of crack problems of cellular materials // J. Materials Science and Technology. 2003. Iss. 11. P. 86–105.
- Feng Y.D., Wang Y.S., Zhang Z.M., Cui J.Z. Dynamic interaction of plane waves unilaterally frictionally constrained inclusion // Acta Mechanica Solida Sinica. 2003. Iss. 16. P. 189–196.
- Бабешко В.А. К проблеме динамического разрушения трещиноватых слоистых тел // ДАН СССР. 1989. Т. 307, № 2. С. 324–327. [Babeshko, V.A. K probleme dinamicheskogo razrusheniya treshchinovatyh sloistyh tel [On the problem of dynamic fracture of fractured layered bodies]. Doklady AN SSSR [Rep. of AS USSR], 1989, vol. 307, no. 2, pp. 324–327. (In Russian)]
- Бабешко В.А. К расчету параметров высокочастотного резонанса в трехмерном случае // ДАН СССР. 1994. Т. 335, № 1. С. 55–58. [Babeshko, V.A. K raschetu parametrov vysokochastotnogo rezonansa v trekhmernom sluchae [Calculation of the parameters of high-frequency resonance in the three-dimensional case]. Doklady AN SSSR [Rep. of AS USSR], 1994, vol. 335, no. 1, pp. 55–58. (In Russian)]
- Бабешко В.А. Динамика сред при наличии совокупности неоднородностей или дефектов и теория вирусов вибропрочности // Изв. Вузов. Сев.-Кавказ. Регион. Естеств. Науки. 1998. № 1. С. 24–26. [Babeshko, V.A. Dinamika sred pri nalichii sovokupnosti neodnorodnostej ili defektov i teoriya virusov vibroprochnosti [Dynamics of media in the presence of a set of inhomogeneities or defects and the theory of vibration strength viruses]. Izvestiya Vuzov. Severo-Kavkazskiy Region. Estestvennye Nauki [Bulletin of Universities. North Caucasus Region. Natural Science], 1998, no. 1, pp. 24–26. (In Russian)]
- Бабешко В.А. Среды с неоднородностями (случай совокупностей включений и трещин) // Изв. РАН. Механика твердого тела. 2000. № 3. С. 5–9. [Babeshko, V.A. Sredy s neodnorodnostyami (sluchaj sovokupnostej vklyuchenij i treshchin) [Media with inhomogeneities (the case of aggregates of inclusions and cracks)]. Izvestiya RAN. Mekhanika tverdogo tela [Bulletin of RAS. Mechanics of Solids], 2000, no. 3, pp. 5–9. (In Russian)]
- Babeshko V.A., Pavlova A.V., Ratner S.V., Williams R.T. Problems on the vibration of an elastic half-space containing a system of interior cavities // Doklady Physics. 2002. Vol. 47. Iss. 9. P. 677–679.
- Бабешко В.А., Бабешко О.М. Метод факторизации в теории вирусов вибропрочности // ДАН. 2003. Т. 393, № 4. С. 1–5. [Babeshko, V.A., Babeshko, O.M. Metod faktorizacii v teorii virusov vibroprochnosti [The factorization method in the theory of vibration strength viruses]. Doklady RAN [Rep. of RAS], 2003, vol. 393, no. 4, pp. 1–5. (In Russian)]
- Собисевич Л.Е., Собисевич А.Л., Фатьянов А.Г. Длиннопериодные сейсмогравитационные процессы в литосфере. М.: ИФЗ РАН, 2020. 228 с. [Sobisevich, L.E., Sobisevich, A.L., Fat'yanov, A.G. Dlinnoperiodnye sejsmogravitacionnye processy v litosfere [Long-period seismic-gravity processes in the lithosphere]. IFZ RAN, Moscow, 2020. (In Russian)]
- Пряхина О.Д., Смирнова А.В. Эффективный метод решения динамических задач для слоистых сред с разрывными граничными условиями // ПММ. 2004. Т. 68, Вып. 3. С. 499–506. [Pryahina, O.D., Smirnova, A.V. Effektivnyj metod resheniya dinamicheskih zadach dlya sloistyh sred s razryvnymi granichnymi usloviyami [An effective method for solving dynamic problems for layered media with discontinuous boundary conditions]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 2004, vol. 68, iss. 3, pp. 499–506. (In Russian)]
- Качко Д.Л., Пряхина О.Д., Смирнова А.В., Березин Н.С. К расчету динамических характеристик гексагональных пьезоэлектриков // Известия вузов. Сев.-Кавказ. регион. Естеств. науки. 2009. № 5. С. 30–33. [Kachko, D.L., Pryahina, O.D., Smirnova, A.V., Berezin, N.S. K raschetu dinamicheskih harakteristik geksagonal'nyh p'ezoelektrikov [Calculation of the dynamic characteristics of hexagonal piezoelectrics]. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki [Bulletin of Universities. North Caucasus Region. Natural Science], 2009, no. 5, pp. 30–33. (In Russian)]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с. [Vorovich, I.I., Babeshko, V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskih oblastej [Dynamic mixed problems of elasticity theory for non-classical domains]. Nauka, Moscow, 1979. (In Russian)]
- Колесников М.Н., Павлова А.В. Дифференциальный метод факторизации в исследовании динамики упругих сред с совокупностью дефектов // Экологический вестник Черноморского экономического сотрудничества. 2011. № 4. С. 36–44. [Kolesnikov, M.N., Pavlova A.V. Differencial'nyj metod faktorizacii v issledovanii dinamiki uprugih sred s sovokupnost'yu defektov [Differential method of factorization in the study of the dynamics of elastic media with a set of defects]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2011, no. 4, pp. 36–44. (In Russian)]
- Борисов Д.В., Пряхина О.Д., Смирнова А.В. Решение динамической задачи для трехслойной среды с включениями // Экологический вестник Черноморского экономического сотрудничества. 2004. № 2. С. 8–13. [Borisov, D.V., Pryahina, O.D., Smirnova, A.V. Reshenie dinamicheskoj zadachi dlya trekhslojnoj sredy s vklyucheniyami [Solution of a dynamic problem for a three-layer medium with inclusions]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2004, no. 2, pp. 8–13. (In Russian)]
- Бабешко В.А. Новый метод в теории пространственных динамических смешанных задач // ДАН СССР. 1978. Т. 242. Вып. 1. С. 62–65. [Babeshko, V.A. Novyj metod v teorii prostranstvennyh dinamicheskih smeshannyh zadach [A new method in the theory of spatial dynamic mixed problems]. Doklady AN SSSR [Rep. of AS USSR], 1978, vol. 242, iss. 1, pp. 62–65. (In Russian)]
- Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 256 с. [Babeshko, V.A. Obobshchennyj metod faktorizacii v prostranstvennyh dinamicheskih smeshannyh zadachah teorii uprugosti [Generalized method of factorization in spatial dynamic mixed problems of elasticity theory]. Nauka, Moscow, 1984. (In Russian)]
- Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. М.: Научный мир, 1999. 248 с. [Vorovich, I.I., Babeshko, V.A., Pryahina, O.D. Dinamika massivnyh tel i rezonansnye yavleniya v deformiruemyh sredah [Dynamics of massive bodies and resonance phenomena in deformable media.]. Nauchnyj mir, Moscow, 1999. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2021 Павлова А.В., Рубцов С.Е., Телятников И.С.

This work is licensed under a Creative Commons Attribution 4.0 International License.