Modeling the migration of pollutants using three-dimensional cellular automata

Authors

  • Rubtsov S.E. Kuban State University, Krasnodar, Russian Federation
  • Pavlova A.V. Kuban State University, Krasnodar, Russian Federation
  • Istomin N.K. Federal Research Center for Rice, Krasnodar, Russian Federation
  • Telyatnikov I.S. Southern Scientific Centre of Russian Academy of Science, Rostov-on-Don, Russian Federation

UDC

536.2:004.94

EDN

EILBFT

DOI:

10.31429/vestnik-18-4-8-13

Abstract

The paper proposes a modification of the CA-model of diffusion with the vicinity of Margolus. Its spatial implementation and the addition of factors affecting the propagation of matter (wind and gravity) brings the model closer to the simulated process. 

The automata simulating diffusion operates in a two-stroke synchronous mode. The model also introduces the possibility of bypassing the obstacles (uneven terrain, elements of construction, etc.). To simulate the convection process, a third cycle was introduced into the CA operation algorithm, which is responsible for the movement of particles under the influence of the wind, taking into account their possible collision. CA-diffusion in space with various kinds of obstacles was implemented. When modeling the interaction between a substance and an obstacle, each block in the basic substitution is associated with a binary type parameter, as a result of which all blocks are subdivided into two types: internal and boundary. As a result, the introduced parameter determines the necessity to rotate the block under consideration when performing basic substitution. In this case, the boundary of the modeling area can be specified in the form of planes (plates) and parallelepipeds. Obstacles are specified by a separate boolean three-dimensional array. The use of such obstacles, simulating walls and buildings, allows us to simulate the diffusion of contaminants, for example, in urban environments. With a given probability, particles can settle on vertical and horizontal surfaces.

An additional parameter was also introduced into the CA, which makes it possible to simulate the movement of a pollutant under the influence of gravity. To take into account the degradation of the impurity, one more phase was added to the cellular automata model, at which each cell with a particle can turn into a cell of the environment with a certain given probability.

For the convenience of interpretation and analysis of the proposed model results, the possibility of transition from Boolean values obtained with the help of the CA to continuous functions describing the field of impurity concentration by means of averaging over a given radius is provided.

Keywords:

cellular automata, spatial diffusion, the vicinity of Margolus, impurity transfer, sedimentation, degradation

Funding information

Работа выполнена при поддержке РФФИ и администрации Краснодарского края (19-41-230005).

Authors info

  • Sergei E. Rubtsov

    канд. физ.-мат. наук, доцент кафедры математического моделирования Кубанского государственного университета

  • Alla V. Pavlova

    д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

  • Nikita K. Istomin

    канд. физ.-мат. наук, старший научный сотрудник лаборатории математики и механики Федерального исследовательского центра "Южный научный центр РАН"

  • Ilya S. Telyatnikov

    канд. физ.-мат. наук, старший научный сотрудник лаборатории математики и механики Федерального исследовательского центра "Южный научный центр РАН"

References

  1. Алоян А.Е. Моделирование динамики и кинетики газовых примесей и аэрозолей в атмосфере. М.: Наука, 2008. 415 с. [Aloyan A.E. Modelirovanie dinamiki i kinetiki gazovykh primesey i aerozoley v atmosfere [Modeling the dynamics and kinetics of gaseous impurities and aerosols in the atmosphere]. Nauka, Moscow, 2008. (In Russian)]
  2. Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. Новосибирск: Наука, 1985. 245 с. [Penenko V.V., Aloyan A.E. Modeli i metody dlya zadach okhrany okruzhayushchey sredy [Models and methods for environmental protection problems]. Nauka, Novosibirsk, 1985. (In Russian)]
  3. Bandman O.L. A method for construction of cellular automata simulating pattern formation processes // Theoretical background of applied discrete mathematics. 2010. No. 4. P. 91–99.
  4. Бандман О.Л. Отображение физических процессов на их клеточно-автоматные модели // Вестник томского государственного университета. 2008. № 2(3). C. 5–17. [Bandman O.L. Otobrazhenie fizicheskikh protsessov na ikh kletochno-avtomatnye modeli [Mapping physical processes on their cellular automata models]. Vestnik tomskogo gosudarstvennogo universiteta [Bulletin of the Tomsk State University], 2008, no. 2(3), pp. 5–17. (In Russian)]
  5. Алексеев Д.В., Казунина Г.А., Чередниченко А.В. Клеточно-автоматное моделирование процесса разрушения хрупких материалов // Прикладная дискретная математика. Дискретные модели реальных процессов. 2015(a). № 2 (28). С. 103–117. [Alekseev D.V., Kazunina G.A., Cherednichenko A.V. Kletochno-avtomatnoe modelirovanie protsessa razrusheniya khrupkikh materialov [Cellular-automatic modeling of the process of destruction of brittle materials]. Prikladnaya diskretnaya matematika. Diskretnye modeli real'nykh protsessov [Applied Discrete Mathematics. Discrete models of real processes], 2015(a), no. 2 (28), pp. 103–117. (In Russian)]
  6. Беланков А.Б., Столбов В.Ю. Применение клеточных автоматов для моделирования микроструктуры материала при кристаллизации // Сиб. журн. индустр. матем. 2005. № 8:2. C. 12–19. [Belankov A.B., Stolbov V.Yu. Primenenie kletochnykh avtomatov dlya modelirovaniya mikrostruktury materiala pri kristallizatsii [Application of cellular automata for modeling the microstructure of a material during crystallization]. Sibirskiy zhurnal industrial'noy matematiki [Siberian Journal of Industrial Mathematics], 2005, no. 8:2, pp. 12–19. (In Russian)]
  7. Рубцов С.Е., Павлова А.В. Клеточно-автоматные модели диффузионно-реакционных процессов многокомпонентных примесей // Защита окружающей среды в нефтегазовом комплексе. 2016. № 6. С. 55–60. [Rubtsov S.E., Pavlova A.V. Kletochno-avtomatnye modeli diffuzionno-reaktsionnykh protsessov mnogokomponentnykh primesey [Cellular-automatic models of diffusion-reaction processes of multicomponent impurities]. Zashchita okruzhayushchey sredy v neftegazovom komplekse [Environmental protection in the oil and gas complex], 2016, no. 6, pp. 55–60. (In Russian)]
  8. Chopard B., Droz M. Cellular automata model for heat conduction in a fluid // Physical Letters A. 1988. Vol. 126. No. 8/9. P. 476–480.
  9. Weimar J. Cellular automata for reaction/diffusion systems // Parallel Computing. 1997. Vol. 23. No 11. P. 1699–1715.
  10. Маглинейкий Г., Степанцов М. Клеточные автоматы для расчета некоторых газодинамических процессов // Журнал вычислительной математики и математической физики. 1996. Т. 36. № 5. С. 137–145. [Maglineykiy G., Stepantsov M. Kletochnye avtomaty dlya rascheta nekotorykh gazodinamicheskikh protsessov [Cellular automata for calculating some gas-dynamic processes]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics], 1996, vol. 36, no 5, pp. 137–145. (In Russian)]
  11. Свирежев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987. 368 с. [Svirezhev Yu.M. Nelineynye volny, dissipativnye struktury i katastrofy v ekologii [Nonlinear waves, dissipative structures and catastrophes in ecology]. Nauka, Moscow, 1987. (In Russian)]
  12. Аладьев В.З. Классические однородные структуры. Клеточные автоматы. Fultus Books. CA, Palo Alto, 2009. 535 с. [Alad'ev V.Z. Klassicheskie odnorodnye struktury. Kletochnye avtomaty [Classic homogeneous structures. Cellular automata]. Fultus Books. CA, Palo Alto, 2009. (In Russian)]
  13. Матюшкин И.В., Заплетина М.А. Обзор по тематике клеточных автоматов на базе современных отечественных публикаций // Компьютерные исследования и моделирование. 2019. Т. 11. № 1. С. 9–57. [Matyushkin I.V., Zapletina M.A. Obzor po tematike kletochnykh avtomatov na baze sovremennykh otechestvennykh publikatsiy [Review on the topic of cellular automata based on modern domestic publications]. Komp'yuternye issledovaniya i modelirovanie [Computer Research and Modeling], 2019, vol. 11, no. 1, pp. 9–57. (In Russian)]
  14. Бандман О.Л. Инварианты клеточно-автоматных моделей реакционно-диффузионных процессов // Прикладная дискретная математика. 2012. № 3(17). С. 108–120. [Bandman O.L. Invarianty kletochno-avtomatnykh modeley reaktsionno-diffuzionnykh protsessov [Invariants of cellular automata models of reaction-diffusion processes]. Prikladnaya diskretnaya matematika [Applied discrete mathematics], 2012, no. 3(17), pp. 108–120. (In Russian)]
  15. Кочкин Н.С., Павлова А.В., Рубцов С.Е. Клеточно-автоматное и конечно-разностное моделирование процесса миграции примеси // Актуальные проблемы прикладной математики, информатики и механики: труды Международной конференции. Воронеж: Научно-исследовательские публикации, 2020. С. 950–953. [Kochkin N.S., Pavlova A.V., Rubtsov S.E. Kletochno-avtomatnoe i konechno-raznostnoe modelirovanie protsessa migratsii primesi [Cellular-automatic and finite-difference modeling of the process of migration of impurities]. Aktual'nye problemy prikladnoy matematiki, informatiki i mekhaniki: trudy Mezhdunarodnoy konferentsii [Actual problems of applied mathematics, informatics and mechanics: proceedings of the International conference]. Nauchno-issledovatel'skie publikatsii, Voronezh, 2020, pp. 950–953. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

8-13

Section

Mathematics

Dates

Submitted

December 21, 2021

Accepted

December 26, 2021

Published

January 10, 2022

How to Cite

[1]
Rubtsov, S.E., Pavlova, A.V., Istomin, N.K., Telyatnikov, I.S., Modeling the migration of pollutants using three-dimensional cellular automata. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, т. 18, № 4, pp. 8–13. DOI: 10.31429/vestnik-18-4-8-13

Similar Articles

1-10 of 92

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>