On the features of a new type of cracks in applications

Authors

  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation
  • Lozovoy V.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Pluzhnik A.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Uafa S.B. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-16-3-28-32

Abstract

Griffiths-Irwin cracks are formed as a result of smooth continuous deformation of laterally compressible, before turning into a cavity, holes in the form of an ellipse or circle, located in an unlimited plate. The resulting cavities have a smooth boundary, and the angle at the vertices of the crack is 180 degrees. The peculiarity of the new type of cracks is the same model of cavity formation, with the difference that instead of an ellipse a rectangle is accepted. In the limit, a crack with a piecewise smooth boundary is obtained, with an angle at the vertex equal to zero. For this type of cracks, a different set of equations is formed, depending on the convenience of research. In the framework of the linear theory of elasticity, after loading bodies with cracks, it is allowed to drift the boundary conditions to the boundaries that occupied the position before deformation. This is used in equations. In the case of a piecewise smooth boundary, stress concentrations can occur at the fracture points of a new type of fracture, which can cause unlimited stresses and displacements if they remain within the framework of linear elasticity. In reality, in these zones of the material, either the destruction of the medium occurs, or its transition to another properties, plastic, creep, visco-elastic, nonlinear, leading to finite stresses and strains. Line up equations describing the behavior of cracks of a new type for the case of a semi-infinite crack.

Keywords:

block element, topology, exterior forms, block structures, boundary problems, cracks, subduction, tsunami, landslides

Acknowledgement

Отдельные фрагменты работы выполнены в рамках реализации Госзадания Минобрнауки на 2019 г. (проекты 9.8753.2017/8.9), ЮНЦ РАН на 2019 г. (проект 00-18-04) № госрег. 01201354241, программ президиума РАН №7 (проект 00-18-21) и I-52 (проект 00-18-29), и при поддержке РФФИ (проекты 19-41-230003, 19-41-230004, 19-48-230014, 17-08-00323, 18-08-00465, 18-01-00384, 18-05-80008).

Author Infos

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

e-mail: evdokimova.olga@mail.ru

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета, директор Научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета, заведующий лабораторией Южного федерального университета

e-mail: babeshko41@mail.ru

Viktor V. Lozovoy

канд. физ.-мат. наук, научный сотрудник Южного научного центра РАН

e-mail: niva_kgu@mail.ru

Andrei V. Pluzhnik

младший научный сотрудник Южного научного центра РАН

e-mail: infocenter@kubsu.ru

Samir B. Uafa

младший научный сотрудник Южного научного центра РАН

e-mail: uafa70@mail.ru

References

  1. Babeshko, V.A., Babeshko, O.M., Evdokimova, O.V. A New Type of Cracks Adding to Griffith-Irwin Cracks. Doklady Physics, 2019, vol. 64, no. 3, pp. 102–105. DOI: 10.1134/S1028335819030042
  2. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. On the possibility of predicting some types of earthquake by a mechanical approach. Acta Mechanica, 2018, vol. 229, iss. 5, pp. 2163–2175. DOI: 10.1007/s00707-017-2092-0
  3. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. On a mechanical approach to the prediction of earthquakes during horizontal motion of litospheric plates. Acta Mechanica, 2018, vol. 229, iss. 10, pp. 4727–4739. DOI: 10.1007/s00707-018-2255-7
  4. Griffith, A.A. The phenomena of rupture and flow in solids. Trans. Roy. Soc. A, 1920, vol. 221, pp. 163–197. DOI: 10.1098/rsta.1921.0006
  5. Irwin, G. Fracture dynamics. Fracture of metals, ASM, Cleveland. 1948, pp. 147–166.
  6. Cherepanov, G.P. Mekhanika khrupkogo razrusheniya [A mechanics of brittle fracture]. Nauka, Moscow, 1974. (In Russian)
  7. Morozov, N.F. Matematicheskie voprosy teorii treshchin [Mathematical issues in crack theory]. Nauka, Moscow, 1984. (In Russian)
  8. Rice, 8.j.R. Elastic fracture mechanics concepts for interface cracks. Trans. ASME. J. Appl. Mech., 1988, vol. 55, p. 98–103.
  9. Qu, J. Interface crack loaded by a time-harmonic plane wave. Int. J. of Solids and Struct., 1994, vol. 31, iss. 3, pp. 329–345.
  10. Parton, V.Z., Boriskovskiy, V.G. Dinamika khrupkogo razrusheniya [The dynamics of brittle fracture]. Mashinostroenie, Moscow, 1988. (In Russian)
  11. Aleksandrov, V.M., Smetanin, B.I., Sobol', B.V. Tonkie kontsentratory napryazheniy v uprugikh telakh [Thin stress concentrators in elastic bodies]. Nauka, Moscow, 1993. (In Russian)
  12. Kirugulige, M.S., Tippur, H.V. Mixed-mode dynamic crack growth in functionally graded glass-filled epoxy. Exp Mech., 2006, vol. 46, iss. 2, pp. 269–281.
  13. Rangarajan, R., Chiaramonte, M.M., Hunsweck, M.J., Shen, Y., Lew, A.J. Simulating curvilinear crack propagation in two dimensions with universal meshes. Int. J. Numer. Meth. Engng., 2014, vol. 102, iss. 3–4, pp. 632–670.
  14. Huang, Y., Gao, H. Intersonic crack propagation - Part II: Suddenly stopping crack. J. Appl. Mech., 2002, vol. 69, pp. 76–80.
  15. Krueger, R. Virtual Crack Closure Technique: History, Approach, and Applications. Appl. Mech. Rev., 2004, vol. 57, pp. 109–143.

Issue

Section

Mechanics

Pages

28-32

Submitted

2019-08-15

Published

2019-09-30

How to Cite

Babeshko O.M., Evdokimova O.V., Babeshko V.A., Lozovoy V.V., Pluzhnik A.V., Uafa S.B. On the features of a new type of cracks in applications. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 3, pp. 28-32. DOI: https://doi.org/10.31429/vestnik-16-3-28-32 (In Russian)