To models for assessing the induced stress of the geological massif in seismically dangerous territories

Authors

  • Zaretskaya M.V. Kuban State University, Krasnodar, Российская Федерация
  • Pavlova A.V. Kuban State University, Krasnodar, Российская Федерация
  • Lozovoy V.V. Southern Scientific Centre of Russian Academy of Science, Rostov-on-Don, Российская Федерация

UDC

539.422.3

DOI:

https://doi.org/10.31429/vestnik-17-2-42-48

Abstract

It is known that the most significant man-made earthquakes are induced by the long-term production of hydrocarbons, existing technologies and features of the organization and implementation of the production process.

Their peculiarity consists in increasing the maximum magnitude of recorded seismic events after some time after the start of production activity.

In this work, we propose a model for studying the dynamics of the natural tension of the geological massif under the direct impact of the production infrastructure. It is shown that the intensity of the process depends on the strength and spatial distribution of anthropogenic impact, geotechnical features of the territories.

A distributed load is applied to the surface of the structure under study, simulating the harmonic signal generated by the surface objects of the production infrastructure. Internal production wells forming a cylindrical surface can perform distributed horizontal and vertical vibrations.

We conducted a study of the amplitude-frequency characteristics, solved the problem of determining the contact stresses arising in the system.

The objects of the surface production infrastructure are modeled by a stamp on which a vertical harmonic load is applied. The stresses under the stamp created by buried inclusions are determined. The nature of the stress distribution under the stamp is determined by the totality of the system parameters: the size of the sources, the type of load distribution on the inclusions, and the oscillation frequency.

The results we obtained are in good agreement with the conclusions made on the basis of long-term observations of the seismicity of territories with intensive exploitation of hydrocarbon deposits, according to which production activity has only a slight change in the background seismic tension.

Keywords:

earthquake hazardous territory, induced tension, technogenic impact, surface load, internal load, stress-strain state

Acknowledgement

Отдельные результаты работы получены при поддержке РФФИ (проекты 18-01-00124, 19-08-00145), РФФИ и Администрации Краснодарского края (проект 19-41-230002).

Author Infos

Marina V. Zaretskaya

д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: zarmv@mail.ru

Alla V. Pavlova

д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: pavlova@math.kubsu.ru

Viktor V. Lozovoy

канд. физ.-мат. наук, старший научный сотрудник Южного научного центра РАН

e-mail: niva_kgu@mail.ru

References

  1. Adushkin V.V., Turuntayev S.B. Tekhnogennaya seysmichnost' – indutsirovannaya i triggernaya [Technogenic seismicity – induced and trigger]. IDG RAN, Moscow. (In Russian)
  2. Adushkin V.V., Turuntayev S.B. Tekhnogennyye protsessy v zemnoy kore (opasnyye i katastroficheskiye) [Technogenic processes in the earth's crust (dangerous and catastrophic)]. INEK, Moscow, 2005. (In Russian)
  3. Sibgatulin V.G., Simonov K.V., Peretokin S.A. Otsenka seysmicheskoy opasnosti yuga Tsentral'noy Sibiri [Seismic hazard assessment of the south of Central Siberia.]. KNIIGiMS, Krasnoyarsk, 2014. (In Russian)
  4. McGarr A., Simpson D., Seeber L. Case Histories of Induced and Triggered Seismicity. International Handbook of Earthquake and Engineering Seismology, Part A. Academic Press, London, 2002, pp. 647–661.
  5. Suckale J. Induced seismicity in hydrocarbon fields. Advances in Geophysics, 2009, vol. 51, pp. 55–106.
  6. Hallo M., Oprsal I., Eisner L., Ali M.Y. Prediction of magnitude of the largest potentially induced seismic event. J. of Seismology, 2014, vol. 18, iss. 3, pp. 421–431.
  7. Malovichko A.A., Malovichko D.A. Primeneniye metodov chislennogo modelirovaniya seysmicheskikh volnovykh poley dlya izucheniya raznomasshtabnykh proyavleniy tekhnogennoy seysmichnosti [The use of methods for the numerical simulation of seismic wave fields to study different-scale manifestations of technogenic seismicity]. Sovremennyye matematicheskiye i geologicheskiye modeli prirodnoy sredy: Sbornik nauchnykh trudov [Modern mathematical and geological models of the environment: Collection of scientific papers]. Moscow, Izdatelstvo: OIFZ RAN, 2002, pp. 120–138. (In Russian)
  8. Muir Wood D., Hu W., Nash D.F.T. Group effects in stone column foundations: model tests. Geotechnique, 2000, vol. 50, iss. 6, pp. 689–698.
  9. Ambily A.P., Gandhi S.R. Behaviour of stone columns based on experimental and FEM analysis. J. of Geotechnical and Geoenvironmental Engineering, 2007, vol. 133, iss. 4, pp. 405–415.
  10. Pavlova A.V., Kapustin M.S., Zaretskaya M.V., Telyatnikov I.S. Modelirovaniye napryazhenno-deformirovannogo sostoyaniya neodnorodnykh geomaterialov pri vibratsionnykh vozdeystviyakh [Modeling of the stress-strain state of heterogeneous geomaterials under vibrational influences]. Zashchita okruzhayushchey sredy v neftegazovom komplekse [Environmental protection in the oil and gas complex], 2018, no. 4, pp. 48–54. (In Russian)
  11. Pavlova A.V., Zaretskaya M.V., Kapustin M.S., Lozovoy V.V. K issledovaniyu volnovykh protsessov v blochnoy strukture vulkanicheskoy postroyki [To the study of wave processes in the block structure of a volcanic structure]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation], 2019. vol. 16, no. 2, pp. 30–37. (In Russian)
  12. Pryakhina O.D., Smirnova A.V., Yevdokimov A.A., Kapustin M.S. Kolebaniya poluprostranstva pri nalichii sistemy zhestkikh vklyucheniy [Half-space oscillations in the presence of a system of rigid inclusions]. Doklady akademii nauk [Rep. of the Academy of Sciences], 2003, vol. 389, iss. 1, pp. 193–196. (In Russian)
  13. Kapustin M.S. , Pavlova A.V., Rubtsov S.Ye., Telyatnikov I.S. K modelirovaniyu vzaimodeystviya fundamenta s deformiruyemoy gruntovoy sredoy [To modeling the interaction of the foundation with a deformable soil environment]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation], 2015, no. 3, pp. 44–51. (In Russian)
  14. Kapustin M., Pavlova A., Rubtsov S., Telyatnikov I. Model of foundation-base system under vibration load. Communications in Computer and Information Science (CCIS), 2014, vol. 487, pp. 168–173. (In Russian)

Issue

Section

Mechanics

Pages

42-48

Submitted

2020-05-28

Published

2020-06-27

How to Cite

Zaretskaya M.V., Pavlova A.V., Lozovoy V.V. To models for assessing the induced stress of the geological massif in seismically dangerous territories. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 2, pp. 42-48. DOI: https://doi.org/10.31429/vestnik-17-2-42-48 (In Russian)