On systems of integral equations with a difference kernel
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-19-1-42-44Abstract
A number of mixed problems of continuum mechanics and mathematical physics are reduced to solving systems of integral equations, whose kernels have singular or logarithmic features. In the case when a layered medium is considered, the kernels of integral equations depend on the difference of arguments. Such systems of integral equations include the Wiener-Hopf equations. The paper develops a method for studying such systems of integral equations, which is based on a method developed for the case of a system consisting of two equations. When studying a number of similar problems for systems of integral equations of finite number, it is sufficient to represent the general form of each component of the solution. A general representation of the solution of such a system of integral equations is given. It can serve the purposes of studying the types of stress concentration at the edges of its research area.
Keywords:
systems of integral equations, meromorphic functions, factorization, general form of solutionAcknowledgement
References
- Freund L.B. Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, 1998.
- Achenbach J.D. Wave propagation in Elastic Solids. North-Holland Series in Applied Mathematics and Mechanics. North-Holland, Amsterdam, 1973.
- Abrahams I.D., Wickham G.R. General Wiener-Hopf factorization matrix kernels with exponential phase factors. SIAM J. Appl. Math., 1990, vol. 50, pp. 819–838.
- Norris A.N., Achenbach J.D. Elastic wave diffraction by a semi infinite crack in a transversely isotropic material. Q. J. Apple. Math. Mech., 1984, vol. 37, pp. 565–580.
- Sautbekov S., Nilsson B. Electromagnetic scattering theory for gratings based on the Wiener-Hopf method. AIP Conf. Proc., 2009, vol. 1106, pp. 110–117.
- Chakrabarti A., George A.J. Solution of a singular integral equation involving two intervals arising in the theory of water waves. Appl. Math. Lett., 1994, vol. 7, pp. 43–47.
- Davis A.M.J. Continental shelf wave scattering by a semi-infinite coastline. Geophys. Astrophys. Fluid Dyn., 1987, vol. 39, pp. 25–55.
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об одной факторизационной задаче Гильберта-Винера и методе блочного элемента. Доклады Академии наук, 2014, т. 459, № 5, с. 557–561. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. On one Hilbert-Wiener factorization problem and the block element method. Doklady Akademii nauk = Reports of the Academy of Sciences, 2014, vol. 459, no. 5, pp. 557–561. (in Russian)]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука, 1979. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic mixed problems of elasticity theory for non-classical regions. Nauka, Moscow, 1979. (in Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования. Доклады Академии наук, 2021, т. 499, с. 21–26. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Reports of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI 10.31857/S2686740021040039
Downloads
Submitted
Published
How to Cite
Copyright (c) 2022 Babeshko V.A., Babeshko O.M., Evdokimova O.V., Khripkov D.A., Uafa G.N., Lozovoy V.V., Pluzhnik A.V.
This work is licensed under a Creative Commons Attribution 4.0 International License.