То modeling harmonic oscillations of an anisotropic foundation containing a group of planar defects

Authors

UDC

539.3

EDN

NAXSYQ

DOI:

10.31429/vestnik-22-3-36-42

Abstract

Problems of modeling the dynamic processes in systems with foundations of varying depth arise in various scientific and technological fields. These include geophysics, geology, and seismology. In this paper, we consider a numerical-analytical approach to solving mixed boundary value problems for harmonic oscillations of layered anisotropic structures, which can be used in modeling geophysical media containing ordered groups of internal inhomogeneities. The method we present, which is based on the block element method and the principles of the vibration strength "viruses" theory, will allow us to study the properties, including localizational, of physical fields generated by surface sources and interface defects in anisotropic layered structures. To determine the conditions for the localization of a wave process by a system of interface defects, we need to know the real singularities for the elements of the Green's matrix functions and their determinants. This paper presents numerical examples for a four-layer stack of anisotropic materials with interface cracks modeled by a mathematical section. The study results of the problems for layered structures with planar defects can find applications in solving the problem of assessing the influence of mechanical vibrations on microseismicity and further the understanding of the various manifestations of seismicity induced, in particular, by harmonic effects of various genesis.

Keywords:

anisotropic layered medium, harmonic loads, plane cracks

Funding information

The study was carried out with the financial support of the Russian Science Foundation and the KNF within the framework of project No. 24-21-20032.

Authors info

  • Ilya S. Telyatnikov

    канд. физ.-мат. наук, старший научный сотрудник лаборатории математики и механики Южного научного центра РАН

  • Alla V. Pavlova

    д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

References

  1. Собисевич, Л.Е., Собисевич, А.Л., Фатьянов, А.Г., Длиннопериодные сейсмогравитационные процессы в литосфере. Москва, ИФЗ РАН, 2020. [Sobisevich, L.E., Sobisevich, A.L., Fatyanov, A.G., Dlinnoperiodnye seysmogravitatsionnye protsessy v litosfere = Long-period seismogravitational processes in the lithosphere. Moscow, IPE RAS, 2020. (in Russian)]
  2. Стогний, В.В., Габараев, А.Ф., Ксенофонтов, И.В., Мельков, Д.А., Тригубович, Г.М., Некоторые проблемы ЭМИ-мониторинга в Крымско-Кавказской сейсмической зоне. В Современные проблемы геологии, геофизики и геоэкологии Северного Кавказа. Москва, Институт истории естествознания и техники им. С.И. Вавилова РАН, 2023, с. 400–403. [Stogniy, V.V., Gabaraev, A.F., Ksenofontov, I.V., Melkov, D.A., Trigubovich, G.M., Some problems of EMI monitoring in the Crimean-Caucasian seismic zone. In Sovremennye problemy geologii, geofiziki i geoekologii Severnogo Kavkaza = Modern Problems of Geology, Geophysics and Geoecology of the North Caucasus. Moscow, S.I. Vavilov Institute of the History of Natural Science and Technology, Russian Academy of Sciences, 2023, pp. 400–403. (in Russian)]
  3. Лаверов, Н.П. (ред.), Изменение окружающей среды и климата, том 1: сейсмические процессы и катастрофы. Москва, ИФЗ РАН, 2008. [Laverov, N.P. (ed.), Izmenenie okruzhayushchey sredy i klimata, tom 1: seysmicheskie protsessy i katastrofy = Environmental and Climate Change, vol.1: Seismic Processes and Disasters. Moscow, IPE RAS, 2008. (in Russian)]
  4. Садовский, М.А., Писаренко, В.Ф., Сейсмический процесс в блоковой среде. Москва, Наука, 1991. [Sadovsky, M.A., Pisarenko, V.F., Seysmicheskiy protsess v blokovoy srede = Seismic process in a block medium. Moscow, Nauka, 1991. (in Russian)]
  5. Александров, В.М., Сметанин, Б.И., Соболь, Б.В., Тонкие концентраторы напряжений в упругих телах. Москва, Наука, 1993. [Aleksandrov, V.M., Smetanin, B.I., Sobol, B.V., Thin stress concentrators in elastic bodies. Moscow, Nauka, 1993. (in Russian)]
  6. Дьелесан, Э., Руайе, Д., Упругие волны в твердых телах. Применение для обработки сигналов. Москва, Наука, 1982. [Dieulesan, E., Royer, D., Elastic Waves in Solids. Application to Signal Processing. Moscow, Nauka, 1982. (in Russian)]
  7. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Topological method of solving boundary-value problems and block elements. Doklady Physics, 2013, vol. 58, no. 4, pp. 152–155. DOI: 10.1134/S1028335813040083
  8. Бабешко, В.А., Павлова, А.В., Ратнер, С.В., Вильямс, Р., К решению задачи о вибрации упругого тела, содержащего систему внутренних полостей. Доклады Академии наук, 2002, т. 382, № 5, с. 625–628. [Babeshko, V.A., Pavlova, A.V., Ratner, S.V., Williams, R., On the solution of the problem of vibration of an elastic body containing a system of internal cavities. Doklady Akademii nauk = Proc. of the Academy of Sciences, 2002, vol. 382, no. 5, pp. 625–628. (in Russian)]
  9. Пряхина, О.Д., Смирнова, А.В., Построение определителей матриц-символов Грина многослойных сред с дефектами на основе теории "вирусов" вибропрочности. Экологический вестник научных центов Черноморского экономического сотрудничества, 2006, № 2, с. 35–41. [Pryakhina, O.D., Smirnova, A.V., Construction of determinants of Green's matrix-symbols of multilayered media with defects based on the theory of vibration strength "viruses". Ekologicheskiy vestnik nauchnykh tsentov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2006, no. 2, pp. 35–41. (in Russian)]
  10. Телятников, И.С., Павлова, А.В., К задачам теории "вирусов" вибропрочности в сейсмологии. Геология и геофизика Юга России, т. 15, № 2, с. 116–127. [Telyatnikov, I.S., Pavlova, A.V., On the problems of the theory of vibration strength "viruses" in seismology. Geologiya i geofizika Yuga Rossii = Geology and Geophysics of Southern Russia, vol. 15, no. 2, pp. 116–127. (in Russian)]
  11. Бабешко, В.А., Сыромятников, П.В., Метод построения символа Фурье матрицы Грина многослойного электроупругого полупространства. Известия РАН. Механика твердого тела, 2002, № 5, с. 35–47. [Babeshko, V.A., Syromyatnikov, P.V., Method for constructing the Fourier symbol of the Green's matrix of a multilayer electroelastic half-space. Izvestiya RAN. Mekhanika tverdogo tela = Bulletin of the Russian Academy of Sciences. Solid State Mechanics, 2002, no. 5, pp. 35–47. (in Russian)]
  12. Зарецкая, М.В., Москвичев, С.В., Павлова, А.В., Плужник, А.В., Ратнер, С.В., Сыромятников, П.В., О смешанных задачах для многослойных анизотропных материалов со множественными неоднородностями. Экологический вестник научных центров Черноморского экономического сотрудничества, 2007, № 1, с. 35–41. [Zaretskaya, M.V., Moskvichev, S.V., Pavlova, A.V., Pluzhnik, A.V., Ratner, S.V., Syromyatnikov, P.V., On mixed problems for multilayer anisotropic materials with multiple inhomogeneities. Ekologicheskiy vestnik nauchnykh tsentov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2007, no. 1, pp. 35–41. (in Russian)]
  13. Бабешко, В.А., Ратнер, С.В., Сыромятников, П.В., Анизотропные тела с неоднородностями. Случай совокупности трещин. Механика твердого тела, 2007, № 5, с. 49–59. [Babeshko, V.A., Ratner, S.V., Syromyatnikov, P.V., Anisotropic bodies with inhomogeneities. The case of a set of cracks. Mekhanika tverdogo tela = Solid Body Mechanics, 2007, No. 5, pp. 49–59. (in Russian)]
  14. Шаскольской, М.П. (ред.), Акустические кристаллы. Справочник. Москва, Наука, 1982. [Shaskolskoy, M.P. (ed.), Akusticheskie kristally. Spravochnik = Acoustic Crystals. Handbook. Moscow, Nauka, 1982. (in Russian)]
  15. Зеленка, И., P'ezoelektricheskie rezonatory na ob"emnykh i poverkhnostnykh akusticheskikh volnakh = Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах. Москва, Мир, 1990. [Zelenka, I., Piezoelectric Resonators on Bulk and Surface Acoustic Waves. Moscow, Mir, 1990. (in Russian)]

Downloads

Download data is not yet available.

Issue

Pages

36-42

Section

Mechanics

Dates

Submitted

August 19, 2025

Accepted

September 18, 2025

Published

September 22, 2025

How to Cite

[1]
Telyatnikov, I.S., Pavlova, A.V., То modeling harmonic oscillations of an anisotropic foundation containing a group of planar defects. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2025, т. 22, № 3, pp. 36–42. DOI: 10.31429/vestnik-22-3-36-42

Similar Articles

1-10 of 132

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>