The solution of two-dimensional problems of mechanical diffusion using the Volterra integral equation of the 1st kind

Authors

  • Zemskov A.V. Moscow Aviation Institute (National Research University), Moscow, Russian Federation
  • Tarlakovskii D.V. Institute of Mechanics, Moscow State University, Moscow, Russian Federation

UDC

539.3

EDN

VVXYMN

Abstract

Calculation of stress-strain state of structures and their elements, working in conditions of unsteady effects of different physical nature, in the general case reduces to the solution of boundary initial value problems of mechanics-related fields. But the solution of unsteady problems in continuum mechanics along with the elastic diffusion problems is associated with serious mathematical challenges. On the on hand, these are due to the need of Laplace transform conversion used to solve problems of this type. On the other hand, the complexity of solving the unsteady problem significantly increases with its dimension. Depending on certain types of boundary conditions, the solution for these problems may be obtained using the Fourier trigonometric series (or sine and cosine transforms), which significantly simplifies the originals’ finding algorithm. The disadvantage of this method is the restricted application area, which is due to the specifics of boundary conditions. We propose a method to solve the initial value problems of elastic diffusion, based on the construction of a system of Volterra integral equations of the 1st kind. These equations connect the right-hand sides of the boundary conditions of two different tasks of the same dimension and geometry. Kernels of integral operators are the Green's functions of a solved problem. The method is demonstrated on the example of two-dimensional elastic diffusion problem for the orthotropic layer. For the solution of the integral equations the quadrature formulas of medium rectangles are used. As quadrature formulas used rectangles formula. These solutions are presented in the form of graphs.

Keywords:

elastic diffusion, mechanical diffusion, time-dependent problems, Green's function

Funding information

Работа выполнена при финансовой поддержке РФФИ (14-08-01161).

Authors info

  • Andrey V. Zemskov

    канд. физ.-мат. наук, доцент кафедры математического моделирования Московского авиационного института (национального исследовательского университета)

  • Dmitriy V. Tarlakovskii

    д-р. физ.-мат. наук, заведующий лабораторией динамических испытаний НИИ механики МГУ имени М.В. Ломоносова

References

  1. Земсков А.В.,Тарлаковский Д.В. Двумерная нестационарная задача упругой диффузии для изотропной однокомпонентной полуплоскости // Ученые записки Казанского университета. Серия Физико-математические науки. 2015. Т. 57, книга 4. С. 103-111. [Zemskov A.V., Tarlakovskiy D.V. Dvumernaya nestatsionarnaya zadacha uprugoi diffuzii dlya izotropnoi odnokomponentnoi poluploskosti [Two-dimensional unsteady problem of elasticity with diffusion for isotropic one-component half-plane]. Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki [Scientists notes of the Kazan University. Series Physics and mathematics], 2015, vol. 157, iss. 4, pp. 103-111. (In Russian)]
  2. Земсков А.В.,Тарлаковский Д.В. Двумерная нестационарная задача упругой диффузии для изотропного однокомпонентного слоя // Прикладная механика и техническая физика. 2015. Т. 56, no. 6. С. 102-110. [Zemskov A.V., Tarlakovskiy D.V. Dvumernaya nestatsionarnaya zadacha uprugoy diffuzii dlya izotropnogo odnokomponentnogo sloya [Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer]. Prikladnaya mekhanika i tekhnicheskaya fizika [Journal of Applied Mechanics and Technical Physics], 2015, vol. 56, no. 6, pp. 1023-1030. (In Russian)]
  3. Zemskov A.V.,Tarlakovskiy D.V. Method of the equivalent boundary conditions in the unsteady problem for elastic diffusion layer // Materials Physics and Mechanics. 2015. Vol. 23, no. 1. pp. 36-41.
  4. Tarlakovskiy D.V.,Vestyak V.A.,Zemskov A.V. Dynamic Processes in thermoelectromagnetoelastic and thermoelastodiffusive media // Encyclopedia of thermal stress, Springer Dordrecht Heidelberg New York London, Springer reference. 2014. Vol. 2, C-D, pp. 1064-1071.
  5. Журавский А.М. Справочник по эллиптическим функциям. М.: Академия наук СССР, 1941. 236 c. [Zhuravskii A.M. Spravochnik po ellipticheskim funktsiyam [Elliptic Function Reference Book]. Moscow, USSR Academy of Sciences Publ., 1941, 236 p. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

49-56

Section

Article

Dates

Submitted

March 3, 2016

Accepted

March 8, 2016

Published

March 22, 2016

How to Cite

[1]
Zemskov, A.V., Tarlakovskii, D.V., The solution of two-dimensional problems of mechanical diffusion using the Volterra integral equation of the 1st kind. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 1, pp. 49–56.

Similar Articles

1-10 of 365

You may also start an advanced similarity search for this article.