Investigation of the stress state of layered medium with liquid inclusion

Authors

  • Pavlova A.V. Kuban State University, Krasnodar, Russian Federation
  • Rubtsov S.E. Kuban State University, Krasnodar, Russian Federation
  • Telyatnikov I.S. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Zaretskaya M.V. Kuban State University, Krasnodar, Russian Federation

UDC

539.422.3

EDN

VVXYNR

Abstract

In the process of studying regional seismicity and development of methods for assessing the induced or technogenic seismicity, there may arise problems of geomechanics, geophysics, hydrogeology, engineering geology, resulting in the need of constructing mathematical models of structurally inhomogeneous mediums, and study of different dynamic effects in the contacting liquid and elastic mediums on their basis. Expediency of consideration of the piecewise heterogeneous mediums can be justified by the structure of real objects as well as by the convenience of the respective discretization of inhomogeneous medium. In this paper, we consider a model of the geological environment, consisting of two elastic mediums (layer and half-space) with liquid layer between them. Water-filled cavities in the rock formations after pumping out hydrocarbon raw materials and geological medium containing interstratal non-pressure waters can be modeled by similar structures. Movement of fluid outlets, described by the velocity potential, satisfies the wave equation. The interaction of the liquid and elastic mediums is defined by the equality of vertical components of fluid outlets velocity and the elastic medium in the contact zone. The shear stresses at the interface of liquid and elastic medium are absent. Displacements of elastic mediums satisfy the equations of Lame. Displacement amplitudes satisfy the conditions of the principle of limiting absorption. The proposed algorithm allows to determine the contact stresses at the interface between the liquid and elastic mediums and to investigate the properties of generated displacement field.

Keywords:

geomechanics, stress-strain state, fault-block structure, heterogeneity, heterogeneous inclusions

Funding information

Работа выполнена при финансовой поддержке РФФИ (16-08-00191_а, 16-41-230184).

Authors info

  • Alla V. Pavlova

    д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

  • Sergey E. Rubtsov

    канд. физ.-мат. наук, доцент кафедры математического моделирования Кубанского государственного университета

  • Ilya S. Telyatnikov

    канд. физ.-мат. наук, младший научный сотрудник Южного научного центра РАН

  • Marina V. Zaretskaya

    д-р физ.-мат. наук, профессор кафедры интеллектуальных информационных систем Кубанского государственного университета

References

  1. Hallo M., Oprsal I., Eisner L., Ali M.Y. Prediction of magnitude of the largest potentially induced seismic event // Journal of Seismology. 2014. Vol. 18. Iss. 3. P. 421-431.
  2. Маловичко А.А., Маловичко Д.А. Применение методов численного моделирования сейсмических волновых полей для изучения разномасштабных проявлений техногенной сейсмичности // Современные математические и геологические модели природной среды: Сборник научных трудов. М.: ОИФЗ РАН, 2002. С. 120-138. [Malovichko A.A., Malovichko D.A. Primenenie metodov chislennogo modelirovanija sejsmicheskih volnovyh polej dlja izuchenija raznomasshtabnyh projavlenij tehnogennoj sejsmichnosti [Application of numerical modeling of seismic wave fields for the study of multiscale manifestations of technogenic seismicity]. Sovremennye matematicheskie i geologicheskie modeli prirodnoj sredy: Sbornik nauchnyh trudov [Proc. of Modern mathematical and geological models of the environment], Moscow, OIFZ RAN Publ., 2002, pp. 120-138. (In Russian)]
  3. Kennet B.L.N., Kerry N.J. Seismic waves in a stratified half space // Geophys. J. R. astr. Soc. 1979. Vol. 57. P. 557-583.
  4. Pak R.Y.S., Guzina B.B. Seismic soil-structure interaction analysis by direct boundary element methods // Int. J. Solids Struct. 1999. Vol. 36. P. 4743-4766.
  5. Zhang H. M., Chen X. F., Chang S. An efficient numerical method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depths // Pure and Applied Geophysics. 2003. Vol. 160. P. 467-486.
  6. Kosloff D., Baysall E. Forward modeling by a Fourier method // Geophysics. 1982. Vol. 47. P. 1402-1412.
  7. Бабешко В.А., Бабешко О.М., Горшкова Е.М., Зарецкая М.В., Павлова А.В., Телятников И.С. Исследование поведения структурно неоднородных сред с изменяющимися свойствами // Экологический вестник научных центров черноморского экономического сотрудничества. 2013. № 3. С. 5-11. [Babeshko V.A., Babeshko O.M., Gorshkova E.M., Zareckaja M.V., Pavlova A.V., Teljatnikov I.S. Issledovanie povedenija strukturno neodnorodnyh sred s izmenjajushhimisja svojstvami [Investigation of the behavior of structurally inhomogeneous media with changing properties]. Jekologicheskij vestnik nauchnyh centrov chernomorskogo jekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2013, no. 3, pp. 5-11. (In Russian)]
  8. Зарецкая М.В. Математические модели деструктивных процессов в структурно-неоднородной геофизической среде // Защита окружающей среды в нефтегазовом комплексе. 2014. № 2. С. 25-30. [Zareckaja M.V. Matematicheskie modeli destruktivnyh processov v strukturno-neodnorodnoj geofizicheskoj srede [Mathematical models of destructive processes in structurally inhomogeneous geophysical environment]. Zashhita okruzhajushhej sredy v neftegazovom komplekse [Protecting the environment in the oil and gas industry], 2014, no. 2, pp. 25-30. (In Russian)]
  9. Зарецкая М.В., Лозовой В.В. К исследованию строения некоторых геологических структур // Защита окружающей среды в нефтегазовом комплексе. 2012. № 11. С. 19-24. [Zareckaja M.V., Lozovoj V.V. K issledovaniju stroenija nekotoryh geologicheskih struktur [To investigation of the structure of certain geological structures]. Zashhita okruzhajushhej sredy v neftegazovom komplekse [Protecting the environment in the oil and gas industry], 2012, no. 11, pp. 19-24. (In Russian)]
  10. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с. [Novackij V. Teorija uprugosti [Theory of elasticity]. Moscow, Mir Publ., 1975, 872 p. (In Russian)]
  11. Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с. [Babeshko V.A., Glushkov E.V., Zinchenko Zh.F. Dinamika neodnorodnyh linejno-uprugih sred [The dynamics of inhomogeneous linear-elastic media]. Moscow, Nauka Publ., 1989, 344 p. (In Russian)]
  12. Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 343 с. [Brehovskih L.M. Volny v sloistyh sredah [Waves in layered media]. Moscow, Nauka Publ., 1973, 343 p. (In Russian)]
  13. Молотков Л.А., Крауклис П.В., Крауклис Л.А. О распространении сейсмических волн в блочных упруго-жидких средах // Записки научных семинаров ПОМИ. 2003. Т. 297. С. 230-271. [Molotkov L.A., Krauklis P.V., Krauklis L.A. O rasprostranenii sejsmicheskih voln v blochnyh uprugo-zhidkih sredah [On the propagation of seismic waves in block elastic-fluid media]. Zapiski nauchnyh seminarov POMI [Notes scientific seminars POMI], 2003, vol. 297, pp. 230-271. (In Russian)]
  14. Tutuncu A.N., Bui B.T. A coupled geomechanics and fluid flow model for induced seismicity prediction in oil and gas operations and geothermal applications // Journal of Natural Gas Science and Engineering. 2015. Vol. 29. P. 110-124.
  15. Cornet F.H. Earthquakes induced by fluid injections (Short Survey) // Science. 2015. Vol. 348. Iss. 6240. P. 1204-1205.
  16. Нижник М.П., Павлова А.В., Рубцов С.Е. К решению одной задачи для упругого полупространства с жидким включением // Экологический вестник научных центров Черноморского экономического сотрудничества. 2006. № 2. С. 40-43. [Nizhnik M.P., Pavlova A.V., Rubcov S.E. K resheniju odnoj zadachi dlja uprugogo poluprostranstva s zhidkim vkljucheniem [The solution of a problem for the elastic half-space with a liquid inclusion]. Jekologicheskij vestnik nauchnyh centrov Chernomorskogo jekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2006, no. 2, pp. 40-43. (In Russian)]
  17. Павлова А.В., Рубцов С.Е. Дифференциальный метод факторизации для слоисто-блочных сред с дефектами // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. № 4 (5). С. 2410-2412. [Pavlova A.V., Rubtsov S.E. Differentsial'nyy metod faktorizatsii dlya sloisto-blochnykh sred s defektami [Differential factorization method for layered block media with defects]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Bulletin of Nizhny Novgorod University named N.I. Lobachevsky], 2011, no. 4 (5), pp. 2410-2412. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

71-78

Section

Article

Dates

Submitted

February 26, 2016

Accepted

March 10, 2016

Published

March 22, 2016

How to Cite

[1]
Pavlova, A.V., Rubtsov, S.E., Telyatnikov, I.S., Zaretskaya, M.V., Investigation of the stress state of layered medium with liquid inclusion. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 1, pp. 71–78.

Similar Articles

1-10 of 151

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>