To models and methods of studying the interactions of lithospheric structures in the area of the faults

Authors

  • Telyatnikov I.S. Southern Scientific Center of Russian Academy of Sciences, Rostov-on-Don, Russian Federation

UDC

539.3

EDN

WDKVXF

Abstract

We propose an approach to the study of stress-strain state of lithospheric plates containing faults that is quite reliable, given the scale, and consists in modeling of their structures by two-dimensional plates on the three-dimensional elastic substrate. A method for studying the interactions of different types of lithospheric plates with rectilinear faults, which is a modification of the eigenfunction method using the method of block element is described. The method is considered on the example of the solution of the static problem and the problem of steady oscillations of extended plates on the surface of the elastic layer at a predetermined localized surface load. It's advantage lies in the possibility of its application to the study of stress-strain state of structures with faults, under the influence of vibration loads, and also in the process of slow or static interaction. The use of the proposed approach allows to draw conclusions about the impact of the type of fracture and physical-mechanical properties of the lithosphere structures on the character of the wave process in the geological environment, in particular the shape of the signal after passing through the fault, applicable for the study of the fault structure in the upper crust. Since experimental studies of the seismic signal transmission through the fault and features of the interaction of lithospheric structures at faults require significant material and time costs, the theoretical results obtained in this study will allow testing of fracture types of the lithospheric structures using vibroseismic sources while rationally defining the programs of experiments.

Keywords:

fault, composite coating, elastic foundation, vibration, static interaction, factorization methods

Funding information

Работа выполнена при поддержке Российского фонда фундаментальных исследований (16-31-00067 мол_а).

Author info

  • Ilya S. Telyatnikov

    канд. физ.-мат. наук, младший научный сотрудник лаборатории прикладной математики и механики Южного научного центра РАН

References

  1. Садовский М. А. Естественная кусковатость горной породы // Доклады АН СССР. 1979. Т. 247, № 4. С. 829-831. [Sadovskiy M.A. Estestvennaya kuskovatost' gornoi porody [Natural lumpiness of rocks]. Doklady AN SSSR [Rep. of the USSR Academy of Sciences], 1979, vol. 247, no. 4, pp. 829-831. (In Russian)]
  2. Садовский М.А., Красный Л.И. Блоковая тектоника литосферы // Доклады АН СССР. 1986. Т. 287, № 6. С. 1451-1454. [Sadovskiy M.A., Krasnyi L.I. Blokovaya tektonika litosfery [Block tectonics of lithosphere]. Doklady AN SSSR [Rep. of the USSR Academy of Sciences], 1986, vol. 287, no. 6, pp. 1451-1454. (In Russian)]
  3. Babeshko V. Joint use center for vibroseismic cources // Proc. of 7th Framework Programme of the European Community for research, technological development and demonstration activities. URL: http: //rp7.ffg.at/eu-russian_opendays (дата обращения: 11.07.2015).
  4. Бабешко В.А., Бабешко О.М., Евдокимова О.В. Об интегральном и дифференциальном методах факторизации // ДАН. 2006. Т. 410, № 2. С. 168-172. [Babeshko V.A., Babeshko O.M., Evdokimova O.V. Ob integral'nom i differentsial'nom metodakh faktorizatsii [About integral and differential factorization methods]. Doklady Akademii nauk [Rep. of Academy of Sciences], 2006, vol. 410, no. 2, pp. 168-172. (In Russian)]
  5. Бабешко В.А., Бабешко О.М., Евдокимова О.В. Блочные элементы в теории плит сложной формы // Известия РАН. МТТ. 2012. № 5. С. 92-97. [Babeshko V.A., Babeshko O.M., Evdokimova O.V. Blochnye element v teorii plit slozhnoi formy [Block elements in the theory of plates of complicated shape]. Izvestiya RAN. Mekhanika tverdogo tela [Proc. of the Russian Academy of Sciences. Rigid Body Mechanics], 2012, no. 5, pp. 92-97. (In Russian)]
  6. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Топологический метод решения граничных задач и блочные элементы // ДАН. 2013. Т. 449, № 6. С. 657-660. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Topologicheskii metod pesheniya granichnykh zadach i blochnye element [A topological method for solving boundary value problems and block elements]. Doklady Akademii nauk [Rep. of Academy of Sciences], 2013, vol. 449, no. 6, pp. 657-660. (In Russian)]
  7. Вольмир А.С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972. 432 с. [Volmir A.S. Nelineinaya dinamika plastinok i obolochek [Nonlinear dynamics of plates and shells]. Moscow, Nauka Publ., 1972, 432 p. (In Russian)]
  8. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 455 с. [Vorovich I.I., Aleksandrov V.M., Babeshko V.A. Neklassicheskie smeshannye zadachi teorii uprugosti [Non-classical mixed problem of elasticity theory]. Moscow, Nauka Publ., 1974, 455 p. (In Russian)]
  9. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 319 с. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya kh oblastei [Dynamic mixed problem of elasticity theory for nonclassical domains]. Moscow, Nauka Publ., 1979, 319 p. (In Russian)]
  10. Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. М.: Научный мир, 1999. 246 с. [Vorovich I.I., Babeshko V.A., Pryakhina O.D. Dinamika massivnykh tel I rezonansnye yavleniya v deformiruemykh sredakh [Dynamics of massive bodies and resonance phenomena in deformable media]. Moscow, Nauchnyy mir Publ., 1999. 246 p. (In Russian)]
  11. Калинчук В.В., Белянкова Т.И. Динамические контактные задачи для предварительно напряженных электроупругих тел. М.: Физматлит, 2006. 272 с. [Kalinchuk V.V., Belyankova T.I. Dinamicheskie kontaktnye zadachi dlya predvaritel'no napryazhennykh elektrouprugikh tel [Dynamic contact problems for prestressed electroelastic bodies]. Mocow, Fizmatlit Publ., 2006, 272 p. (In Russian)]
  12. Гольденвейзер А.Л. Теория упругих тонких оболочек. М.: Наука, 1976. 512 с. [Goldenveizer A.L. Teoriya uprugikh tonkikh obolochek [Theory of elastic thin shells]. Moscow, Nauka Publ., 1976, 512 p. (In Russian)]
  13. Телятников И.С. Об одной модели деформационных процессов в геофизических структурах // Защита окружающей среды в нефтегазовом комплексе. 2015. № 1. С. 45-49. [Telyatnikov I.S. Ob odnoi modeli deformatsionnykh protsessov v geofizicheskikh strukturakh [On one model of deformation processes in geophysical structures]. Zashchita okruzhayushchey sredy v neftegazovom komplekse [Environmental protection in oil and gas complex], 2015, no. 1, pp. 45-49. (In Russian)]

Downloads

Download data is not yet available.

Issue

Pages

78-89

Section

Article

Dates

Submitted

April 18, 2016

Accepted

May 4, 2016

Published

June 30, 2016

How to Cite

[1]
Telyatnikov, I.S., To models and methods of studying the interactions of lithospheric structures in the area of the faults. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, № 2, pp. 78–89.

Similar Articles

1-10 of 173

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>