Discontinuous solutions of mixed problems and block elements
UDC
539.3Abstract
A number of mixed boundary-value problems in the theory of elasticity are not traditional in the sense that unstable states of the system arise, leading to destruction. These include mixed problems with discontinuous boundary conditions, in which the behavior of contact stresses and displacements, which indicate the destruction of the medium, appear. In some cases, such boundary problems have unlimited energy. Examples of such mixed boundary problems are the contact problems for two rigid dies, which have approached the contact state but have not merged into one stamp, as well as two adjacent cracks, which disappear with a small distance between them. It is shown that such problems, arising in seismology, theory of strength, construction, have singular components, in some cases with unlimited energy, and can be solved by topological methods with pointwise convergence, in particular, by the block element method. Numerical methods based on the application of the energy integral to such problems are not applicable in connection with its divergence. In the case of cracks, taking into account the investigation of the properties of solutions of integral equations obtained earlier, it is proved that a set of cracks lying in the same plane whose vertices are removed by some distance will uncontrollably merge with logarithmic growth when the distance between the vertices reaches a certain minimum.
Keywords:
block element, topology, integral and differential factorization methods, exterior forms, block structures, boundary problems, starting earthquakesFunding information
Отдельные фрагменты работы выполнены в рамках реализации Госзадания на 2017, проект (9.8753.2017/БЧ).
References
- Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 456 с. [Vorovich I.I., Aleksandrov V.M., Babeshko V.A. Neklassicheskie smeshannye zadachi teorii uprugosti [Nonclassical mixed problems in the theory of elasticity]. Moscow, Nauka Pub., 1974, 456 p. (In Russian)]
- Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 320 с. [Vorovich I.I., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey [Dynamic mixed problems of elasticity theory for nonclassical domains]. Moscow, Nauka Publ., 1979, 320 p. (In Russian)]
- Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. М.: Наука, 1999. 246 с. [Vorovich I.I., Babeshko V.A., Pryakhina O.D. Dinamika massivnykh tel i rezonansnye yavleniya v deformiruemykh sredakh [Dynamics of massive bodies and resonant phenomena in deformable media]. Moscow, Nauka Pub., 1999, 246 p. (In Russian)]
- Крейн М.Г. Интегральные уравнения на полупрямой с ядром, зависящим от разности аргументов // Успехи математических наук. 1958. Т. 13. Вып. 5. С. 3-120. [Kreyn M.G. Integral'nye uravneniya na polupryamoy s yadrom, zavisyashchim ot raznosti argumentov [Integral equations on the half-line with a kernel depending on the difference of the arguments]. Uspekhi matematicheskikh nauk [Successes of Mathematical Sciences], 1958, vol. 13, iss. 5, pp. 3-120. (In Russian)]
- Wiener N., Hopf E. Über eine Klasse singuläre Integralgleichungen, S. B. Preuss. Acad. Wiss, 1932. P. 696-706.
- Нобл Б. Метод Винера-Хопфа. М.: Иностранная литература, 1962. 280 с. [Nobl B. Metod Vinera-Khopfa [The Wiener-Hopf method]. Moscow, Inostrannaya literatura Pub., 1962, 280 p. (In Russian)]
- Мусхелишвили Н.И. Сингулярные интегральные уравнения. М.: Наука, 1962. 600 с. [Muskhelishvili N.I. Singulyarnye integral'nye uravneniya [Singular integral equations]. Moscow, Nauka Pub., 1962, 600 p. (In Russian)]
- Гахов Ф.Д. Краевые задачи. М.: Физматлит, 1977. 640 с. [Gakhov F.D. Kraevye zadachi [Boundary problems]. Moscow, Fizmatlit Pub., 1977, 640 p. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О блочных элементах в приложениях // Физическая мезомеханика. 2012. Т. 15. № 1. С. 95-103. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. O blochnykh elementakh v prilozheniyakh [About block elements in applications]. Fizicheskaya mezomekhanika [Physical mesomechanics], 2012, vol. 15, no. 1, pp. 95-103. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. К проблеме физико-механического предвестника стартового землетрясения: место, время, интенсивность // ДАН. 2016. Т. 466. № 6. С. 664-669. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. K probleme fiziko-mekhanicheskogo predvestnika startovogo zemletryaseniya: mesto, vremya, intensivnost' [To the problem of the physico-mechanical forerunner of the initial earthquake: place, time, intensity]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2016, vol. 466, no. 6, pp. 664-669. (In Russian)]
- Брычков Ю.А., Прудников А.П. Интегральные преобразования обобщенных функций. М.: Наука, 1977. 288 с. [Brychkov Yu.A., Prudnikov A.P. Integral'nye preobrazovaniya obobshchennykh funktsiy [Integral transformations of generalized functions]. Moscow, Nauka Pub., 1977, 288 p. (In Russian)]
- Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с. [Babeshko V.A., Glushkov E.V., Zinchenko Zh.F. Dinamika neodnorodnykh lineyno-uprugikh sred [Dynamics of inhomogeneous linearly elastic media]. Moscow, Nauka Pub., 1989, 344 p. (In Russian)]
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2017 Бабешко В.А., Евдокимова О.В., Бабешко О.М., Гладской И.Б., Горшкова Е.М., Зарецкая М.В., Мухин А.С.

This work is licensed under a Creative Commons Attribution 4.0 International License.