Matrix method for constructing the symbol of the Green's function for stationary problems of turbulent diffusion in multilayer media

Authors

  • Syromyatnikov P.V. Southern Scientific Centre of the Russian Academy of Sciences, Krasnodar Branch, Krasnodar, Russian Federation

UDC

539.3

EDN

VABNIG

DOI:

10.31429/vestnik-15-3-62-71

Abstract

In this paper were considered boundary value problems of the third type for three-dimensional stationary equations of turbulent diffusion in multilayer semibounded media. An effective recurrent matrix algorithm for constructing the Fourier symbol of the Green's function is developed, in which all the intermediate quantities are presented in an explicit form. The method was developed for piecewise homogeneous media, but it allows solving similar problems for continuously stratified media by means of the approximation of a gradient medium by a multilayer medium with piecewise constant coefficients. This method is stable for any Peclet numbers. An economical and simple method for calculating the two-dimensional inverse Fourier transform is proposed. The solutions of the Dirichlet and Neumann space problems for a packet of 50 layers are given, all parameters of each lay vary linearly with the vertical coordinate. The proposed methods may be of interest for solving direct and inverse problems of modeling the scattering of impurities.

Keywords:

turbulent diffusion, multilayered medium, Green's function, Fourier transform, numerical integration

Funding information

Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2018 г. (01201354241)

Author info

  • Pavel V. Syromyatnikov

    д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики Южного научного центра РАН, доцент кафедры математического моделирования Кубанского государственного университета

References

  1. Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции-диффузии. М.: Книжный дом "Либроком", 2015. 248 с. [Samarskii, A.A., Vabishchevich, P.N. Numerical methods for solving convection-diffusion problems. Knizhnyy dom "Librokom", Moscow, 2015. (In Russian)]
  2. Бабешко В.А., Павлова А.В., Бабешко О.М., Евдокимова О.В. Математическое моделирование экологических процессов распространения загрязняющих веществ. Краснодар: КубГУ, 2009. 138 с. [Babeshko, V.A., Pavlova, A.V., Babeshko, O.M., Evdokimova, O.V. Mathematical modeling of ecological processes of distribution of polluting substances. Kuban State University Press, Krasnodar, 2009. (In Russian)]
  3. Сыромятников П.В. Периодическая модель распространения загрязняющих веществ в многослойной среде // Экологический вестник научных центров Черноморского экономического сотрудничества, Приложение № 1, 2005. С. 79–86. [Syromyatnikov, P.V. A periodic model for the spread of pollutants in a multilayered environment. Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation, 2005, appendix no. 1, pp. 79–86. (In Russian)]
  4. Karmazin A., Kirillova E., Seemann W., Syromyatnikov P. A study of time harmonic guided Lamb waves and their caustics in composite plates // Ultrasonics. 2013. Vol. 53. Iss. 1. P. 283–293. DOI: 10.1016/j.ultras.2012.06.012
  5. D01AKF Subroutine. The NAG Fortran Library, The Numerical Algorithms Group (NAG), Oxford, United Kingdom www.nag.com

Downloads

Download data is not yet available.

Issue

Pages

62-71

Section

Mechanics

Dates

Submitted

July 23, 2018

Accepted

August 20, 2018

Published

September 29, 2018

How to Cite

[1]
Syromyatnikov, P.V., Matrix method for constructing the symbol of the Green’s function for stationary problems of turbulent diffusion in multilayer media. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, т. 15, № 3, pp. 62–71. DOI: 10.31429/vestnik-15-3-62-71

Similar Articles

1-10 of 193

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>