A method for calculating the Green's function of spatial dynamic boundary value problems of the anisotropic elasticity theory taking into account asymptotic components
UDC
539.3DOI:
https://doi.org/10.31429/vestnik-18-2-40-47Abstract
The paper proposes a theoretically accurate method for taking into account the asymptotic components of the two-dimensional Fourier integral representing the Green's functions for spatial dynamic boundary value problems of the anisotropic theory of elasticity. The body is a multilayer stack of layers or a multilayer half-space and is excited by a surface harmonic stress source. The expressions for the contribution of the asymptotics include the Fourier series, the coefficients of which contain easily computable integrals from the Bessel functions. Asymptotic expressions for the integrals from the Bessel functions for large values of the parameters are given. Numerical examples are given for a lithium niobate crystal. It is shown that the asymptotics of the symbols of the Green's functions in the anisotropic case can contain real and imaginary components simultaneously, which distinguishes them from the isotropic case. Moreover, the resulting solution is always real. The number of operations for calculating the contribution of asymptotics is several orders of magnitude less than the number of operations for calculating the wave part of the integral. The developed formulas make the direct contour integration method logically complete, theoretically accurate and relatively simple to implement.
Keywords:
anisotropy, Green's functions, direct contour integration, Fourier integral, asymptoticsFunding information
Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2021 г. (№ г.р. 01201354241).
References
- Сыромятников П.В. Динамика сложных многослойных гетерогенных сред // Автореф. дис. д-ра физ-мат. наук, Краснодар, 2017. [Syromyatnikov, P.V. Dinamika slozhnykh mnogosloynykh geterogennykh sred [Dynamics of complex multilayer heterogeneous media]. Abstract of the dissertation doct. phys-mat. sciences, Krasnodar, 2017. (In Russian)]
- Karmazin А., Kirillova E., Syromyatnikov P. et al. A study of time harmonic guided Lamb waves and their caustics in composite plates // Ultrasonics. 2013. Vol. 53. Iss. 1. P. 283–293.
- Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. M.: Научный мир, 1999, 246 с. [Vorovich, I.I., Babeshko, V.A., Pryakhina, O.D. Dinamika massivnykh tel i rezonansnye yavleniya v deformiruemykh sredakh [Dynamics of massive bodies and resonance phenomena in deformable media]. Nauchniy Mir, Moscow, 1999. (In Russian)]
- Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. 344 с. [Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F. Dinamika neodnorodnykh lineyno-uprugikh sred [Dynamics of inhomogeneous linear elastic media]. Nauka, Moscow, 1989. (In Russian)]
- Royer D., Dielesant E. Elastic waves in solids II. Generation, Acousto-optic Interaction, Applications. Springer, 2000. 474 p.
- Кузнецов В.М., Жуков А.П., Шнеерсон М.Б. Введение в сейсмическую анизотропию: теория и практика. М: Технологии сейсморазведки, 2006. 159 с. [Kuznetsov, V.M., Zhukov A.P., Schneerson M.B. Vvedenie v seysmicheskuyu anizotropiyu: teoriya i praktika [Introduction to seismic anisotropy: theory and practice]. Tehnologii sejsmorazvedki, Moscow, 2006. (In Russian)]
- Акустические кристаллы / Под. ред. М.П. Шаскольской. М.: Наука, 1982, 633 с. [Shaskolskaya, M.P. (ed.) Acoustic crystals. Nauka, Moscow, 1982. (In Russian)]
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2021 Сыромятников П.В., Кириллова Е.В.
This work is licensed under a Creative Commons Attribution 4.0 International License.