On the discretization of topological spaces of block elements with different boundary conditions for cracks of a new type

Authors

  • Babeshko V.A. Kuban State University, Krasnodar, Russian Federation
  • Kirillova E.V. RheinMain University of Applied Sciences in Wiesbaden, Wiesbaden, Germany
  • Babeshko O.M. Kuban State University, Krasnodar, Russian Federation
  • Evdokimova O.V. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Khripkov D.A. Kuban State University, Krasnodar, Russian Federation
  • Evdokimov V.S. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Zaretsky A.G. Kuban State University, Krasnodar, Russian Federation

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-18-4-14-22

Abstract

Block elements of boundary value problems for partial differential equations have a significant set of different properties that are in the process of being studied. Often certain of their properties are revealed by the example of boundary value problems of the same type. Then new properties are revealed, but for a different type of boundary value problems. Naturally, questions arise as to whether these properties belong to both types of boundary value problems, or the exclusion of such a possibility. In this paper, we analyze similar properties related to the discreteness of the topological structure of block elements of boundary problems for different types of boundary conditions, independence from the dimension of the areas of consideration. The issues under consideration are important for modeling cracks of a new type.

Keywords:

boundary value problems, block element method, packed block elements, discrete topological spaces, Helmholtz equation

Funding information

Работа выполнена при поддержке Российского научного фонда (проект 22-29-00213).

Author info

  • Vladimir A. Babeshko

    академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета, руководитель научных направлений математики и механики Южного научного центра РАН

  • Evgenya V. Kirillova

    канд. физ.-мат. наук, профессор Университета прикладных наук Рейн Майн в г. Висбаден

  • Olga M. Babeshko

    д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

  • Olga V. Evdokimova

    д-р физ.-мат. наук, главный научный сотрудник Южного научного центра РАН

  • Dmitry A. Khripkov

    научный сотрудник Кубанского государственного университета

  • Vladimir S. Evdokimov

    студент Кубанского государственного университета, лаборант Южного научного центра РАН

  • Aleksand G. Zaretsky

    студент Кубанского государственного университета

References

  1. Бабешко В.А., Евдокимова О.В., Бабешко О.М. К проблеме акустических и гидродинамических свойств среды, занимающей область трехмерного прямоугольного клина // ПМТФ. 2019. Т. 60. № 6. С. 90–96. DOI: 10.15372/PMTF20190610 [Babeshko V.A., Evdokimova O.V., Babeshko O.M. K probleme akusticheskikh i gidrodinamicheskikh svoystv sredy, zanimayushchey oblast' trekhmernogo pryamougol'nogo klina [On the problem of acoustic and hydrodynamic properties of a medium occupying the area of a three-dimensional rectangular wedge]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2019, vol. 60, no. 6, pp. 90–96. DOI: 10.15372/PMTF20190610 (In Russian)]
  2. Ткачева Л.А. Колебания плавающей упругой пластины, при периодических смещениях участка дна // ПМТФ. 2005. Т. 46, № 5 (273). С. 166–179. [Tkacheva L.A. Kolebaniya plavayushchey uprugoy plastiny, pri periodicheskikh smeshcheniyakh uchastka dna [Oscillations of a floating elastic plate, with periodic displacements of the bottom section]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2005, vol. 46, no. 5(273), pp. 166–179. (In Russian)]
  3. Ткачева Л.А. Плоская задача о колебаниях плавающей упругой пластины под действием периодической внешней нагрузки // ПМТФ. 2004. Т. 45, № 5 (273). С. 136–145. [Tkacheva L.A. Ploskaya zadacha o kolebaniyakh plavayushchey uprugoy plastiny pod deystviem periodicheskoy vneshney nagruzki [The plane problem of vibrations of a floating elastic plate under the action of a periodic external load]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2004, vol. 45, no. 5(273), pp. 136–145. (In Russian)]
  4. Ткачева Л.А. Поведение плавающей пластины при колебаниях участка дна // ПМТФ. 2005. Т. 46. № 2 (270). С. 98–108. [Tkacheva L.A. Povedenie plavayushchey plastiny pri kolebaniyakh uchastka dna [Behavior of the floating plate during vibrations of the bottom section]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2005, vol. 46, no. 2(270), pp. 98–108. (In Russian)]
  5. Ткачева Л.А. Взаимодействие поверхностных и изгибно-гравитационных волн в ледяном покрове с вертикальной стенкой // ПМТФ. 2013. Т. 54. № 4 (320). С. 158–170. [Tkacheva L.A. Vzaimodeystvie poverkhnostnykh i izgibno-gravitatsionnykh voln v ledyanom pokrove s vertikal'noy stenkoy [Interaction of surface and flexural-gravity waves in an ice cover with a vertical wall]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2013, vol. 54, no. 4(320), pp. 158–170. (In Russian)]
  6. Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 502 с. [Brekhovskikh L.M. Volny v sloistykh sredakh [Waves in layered media]. Nauka, Moscow, 1973. (In Russian)]
  7. Бабич В.М. О коротковолновой асимптотике функции Грина для уравнения Гельмгольца // Математический сборник. 1964. Т. 65. С. 577–630. [Babich V.M. O korotkovolnovoy asimptotike funktsii Grina dlya uravneniya Gel'mgol'tsa [On the short-wavelength asymptotics of the Green's function for the Helmholtz equation]. Matematicheskiy sbornik [Mathematical collection], 1964, vol. 65, pp. 577–630. (In Russian)]
  8. Бабич В.М., Булдырев В.С. Асимптотические методы в проблеме дифракции коротких волн. М.: Наука, 1972. 256 с. [Babich V.M., Buldyrev V.S. Asimptoticheskie metody v probleme difraktsii korotkikh voln [Asymptotic methods in the problem of short wave diffraction]. Nauka, Moscow, 1972. (In Russian)]
  9. Cerveny V., Molotkov I.A., Psencik I. Rey Method in seismology. Praha, Univerzita Karlova, 1977. 216 p.
  10. Мухина И.В. Приближенное сведение к уравнениям Гельмгольца уравнений теории упругости и электродинамики для неоднородных сред // ПММ. 1972. Т. 36. С. 667–671. [Mukhina I.V. Priblizhennoe svedenie k uravneniyam Gel'mgol'tsa uravneniy teorii uprugosti i elektrodinamiki dlya neodnorodnykh sred [Approximate reduction to the Helmholtz equations of the equations of the theory of elasticity and electrodynamics for inhomogeneous media]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1972, vol. 36, pp. 667–671. (In Russian)]
  11. Молотков Л.А. Исследование распространения волн в пористых и трещиноватых средах на основе эффективных моделей Био и слоистых сред. С.-Пб.: Наука. 2001. 348 с. [Molotkov L.A. Issledovanie rasprostraneniya voln v poristykh i treshchinovatykh sredakh na osnove effektivnykh modeley Bio i sloistykh sred [Study of wave propagation in porous and fractured media based on effective Biot models and layered media]. Nauka, S.-Pb., 2001. (In Russian)]
  12. Беркович В.Н. К теории смешанных задач динамики клиновидных композитов // ДАН. Т. 34. № 1. С. 172–176. [Berkovich V.N. K teorii smeshannykh zadach dinamiki klinovidnykh kompozitov [To the theory of mixed problems of the dynamics of wedge-shaped composites]. Doklady Akademii nauk [Rep. of the Academy of Sciences], vol. 34, no. 1, pp. 172–176. (In Russian)]
  13. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования // ДАН. 2021. Т. 499. С. 30–35. DOI: 10.31857/S2686740021040039 [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Fraktal'nye svoystva blochnykh elementov i novyy universal'nyy metod modelirovaniya [Fractal properties of block elements and a new universal modeling method]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2021, vol. 499, pp. 30–35. DOI: 10.31857/S2686740021040039 (In Russian)]
  14. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the possibility ofpredicting some types of earthquake by a mechanical approach // Acta Mechanica. 2018. Vol. 229. Iss. 5. P. 2163–2175. DOI: 10.1007/s00707-017-2092-0
  15. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в теории трещин нового типа // ДАН. 2020. Т. 492. С. 77–80. DOI: 10.31857/S2686740020030050 [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Metod blochnogo elementa v teorii treshchin novogo tipa [Block element method in the theory of new-type cracks]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2020, vol. 492, pp. 77–80. DOI: 10.31857/S2686740020030050 (In Russian)]
  16. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в разложении решений сложных граничных задач механики // ДАН. 2020. Т. 495. С. 34–38. DOI: 10.31857/S2686740020060048 [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Metod blochnogo elementa v razlozhenii resheniy slozhnykh granichnykh zadach mekhaniki [Block element method in the expansion of solutions to complex boundary value problems in mechanics]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2020, vol. 495, pp. 34–38. DOI: 10.31857/S2686740020060048 (In Russian)]
  17. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Исследование трехмерного уравнения Гельмгольца в клине методом блочного элемента // ПМТФ. 2021. Т. 62. № 5. С. 15–21. DOI: 10.15372/PMTF20210500 [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Issledovanie trekhmernogo uravneniya Gel'mgol'tsa v kline metodom blochnogo elementa [Study of the three-dimensional Helmholtz equation in a wedge by the block element method]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics], 2021, vol. 62, no. 5, pp. 15–21. DOI: 10.15372/PMTF20210500 (In Russian)]
  18. Бабешко В.А., Евдокимова О.В., Бабешко О.М., Бушуева О.А. Топологическая дискретизация решений граничных задач механики сплошной среды // Экологический вестник научных центров Черноморского экономического сотрудничества. 2020. T. 16. № 3. С. 65–71. DOI: 10.31429/vestnik-17-3-65-71 [Babeshko V.A., Evdokimova O.V., Babeshko O.M., Bushueva O.A. Topologicheskaya diskretizatsiya resheniy granichnykh zadach mekhaniki sploshnoy sredy [Topological discretization of solutions to boundary value problems in continuum mechanics]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological bulettin of scientific centers of the Black Sea Economic Cooperation], 2020, vol. 16, no. 3, pp. 65–71. DOI: 10.31429/vestnik-17-3-65-71 (In Russian)]

Downloads

Issue

Pages

14-22

Section

Mechanics

Dates

Submitted

December 21, 2021

Accepted

December 31, 2021

Published

January 10, 2022

How to Cite

[1]
Babeshko, V.A., Kirillova, E.V., Babeshko, O.M., Evdokimova, O.V., Khripkov, D.A., Evdokimov, V.S., Zaretsky, A.G., On the discretization of topological spaces of block elements with different boundary conditions for cracks of a new type. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, т. 18, № 4, pp. 14–22. DOI: 10.31429/vestnik-18-4-14-22

Similar Articles

1-10 of 537

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>