Об одном обобщенном подходе в проблеме оценки прочности подземных сооружений, параллельных штолен
УДК
539.3DOI:
https://doi.org/10.31429/vestnik-16-4-6-12Аннотация
Работа посвящена исследованию характеристик напряженно-деформированного состояния подземных сооружений с множественными перегородками, например, тонких месторождений, вскрытых системой параллельных горизонтальных штолен. Рассмотрен подход, обеспечивающий сведение краевой задачи для двух деформируемых слоев, разделенных пластиной с системой бесконечных полосовых полостей, к системе интегральных уравнений. Предложен метод приближенной факторизации матриц-функций двух комплексных переменных, в том числе полиномиальных, по одной из переменных при фиксированных вещественных значениях другой. Этот метод может быть использован при решении систем интегральных уравнений, к которым приводятся рассматриваемые задачи, для нахождения контактных напряжений на опорах и отвисаний кровли штолен.
Ключевые слова:
деформируемые слои, пластины Кирхгофа, метод блочного элемента, система интегральных уравнений, приближенная факторизация матрицФинансирование
Библиографические ссылки
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. К теории влияния глобального фактора на прочность совокупности параллельных соединений слоев // Вычислительная механика сплошных сред. 2016. Т. 9. № 4. С. 412–419.
- Babeshko V.A., Evdokimova O.V., Babeshko O.M., Pavlova A.B., Telatnikov I.S., Fedorenko A.G. The theory of block structures in problems on the strength of galleries and constructions with multiple connections // Doklady Physics. 2019. Vol. 64. No. 1. С. 4–8.
- Бабешко В.А., Бабешко О.М., Евдокимова О.В., Зарецкая М.В., Павлова А.В., Уафа С.Б., Шестопалов В.Л. О мониторинге состояния параллельных штолен в зоне горизонтального движения литосферных плит // МТТ. 2017. № 4. С. 42–49.
- Babeshko V.A., Evdokimova O.V., Babeshko O.M., Gorshkova E.M., Gladskoi I.B., Grishenko D.V., Telyatnikov I.S. Block element method for body, localizations and resonances // Экологический вестник научных центров Черноморского экономического сотрудничества. 2014. № 2. С. 13–19.
- Ворович И.И. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979. 319 с.
- Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984. 265 с.
- Бабешко В.А., Бабешко О.М. Формулы факторизации некоторых мероморфных матриц-функций // ДАН. 2004. Т. 399, № 1. С. 163–167.
- Вольмир А.С. Гибкие пластинки и оболочки. М.: Государственное издательство технико-теоретической литературы, 1956. 422 с.
- Гольденвейзер А.Л. Теория упругих тонких оболочек. М.: Наука, 1976. 512 с.
Загрузки
Отправлено
Опубликовано
Как цитировать
Copyright (c) 2019 Телятников И.С.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.