On blocks of various types in problems of geoecology
UDC
539.422.3EDN
ZHXFNBAbstract
Developers should consider the model of the environment as close to natural as possible, apply a mathematical apparatus that adequately and reliably describes the processes and phenomena occurring in the environment under study, while constructing mathematical models of modern geophysical environment monitoring systems, environmental quality management and environmental management. In this paper, we proposed a method based on a topological approach that allows one to set and solve boundary problems on the basis of equations of motion for media characterized by essentially different mechanical, chemical, rheological characteristics in different coordinate systems. An algorithm of the differential factorization method for investigating processes in a block-structured medium has been developed, the individual blocks of which are formed by spherical boundaries (in spherical coordinates) and cylindrical boundaries (in cylindrical coordinates). The developed methods make it possible to study a wide class of convective currents that arise in the atmosphere (modeling tornadoes), seas and oceans (cyclonic currents of various scales), geophysics; promptly assess the level of technogenic seismicity, which will reduce the seismogenic impact of modern industrial production and minimize the level of induced seismicity.
Keywords:
medium, complex internal structure, topological approach, cylindrical block element, ball block elementFunding information
Работа выполнена при поддержке РФФИ (16-08-00191_а), РФФИ и администрации Краснодарского края (16-41-230154, 16-41-230184).
References
- Babeshko V.A., Evdokimova O.V., Babeshko O.M., Zaretskaya M.V., Pavlova A.V. The differential factorization method for a block structure // Doklady Physics. 2009. Т. 54. № 1. С. 25-28.
- Бабешко В.А., Зарецкая М.В., Рядчиков И.В. К вопросу моделирования процессов переноса в экологии, сейсмологии и их приложения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2008. № 3.С. 20 - 25. [Babeshko V.A., Zareckaya M.V., Ryadchikov I.V. K voprosu modelirovaniya processov perenosa v ehkologii, sejsmologii i ih prilozheniya [To the problem of modeling transport processes in ecology, seismology and their applications]. Jekologicheskij vestnik nauchnyh centrov Chernomorskogo jekonomicheskogo sotrudnichestva [Ecological bulletin of scientific centers of the Black Sea Economic Cooperation], 2008, no. 3, pp. 20-25. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об особенностях метода блочного элемента в нестационарных задачах // ДАН. 2011. Т. 438. № 4. С. 470-474. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Ob osobennostyah metoda blochnogo ehlementa v nestacionarnyh zadachah [On the features of the block element method in nonstationary problems]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2011, vol. 438, no. 4, pp. 470-474. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. О топологических структурах граничных задач в блочных элементах // ДАН. 2016. Т. 470. № 6. С. 650-654. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. O topologicheskih strukturah granichnyh zadach v blochnyh ehlementah [On topological structures of boundary value problems in block elements]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2016, vol. 470, no. 6, pp. 650-654. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Об автоморфизме и псевдодифференциальных уравнениях в методе блочного элемента // ДАН. 2011. Т. 438. № 5. С. 623-625. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Ob avtomorfizme i psevdodifferencial'nyh uravneniyah v metode blochnogo elementa [On automorphism and pseudodifferential equations in the block method Element]. Doklady akademii nauk [Rep. of the Academy of Sciences], 2011, vol. 438, no. 5, pp. 623-625. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Топологический метод решения граничных задач и блочные элементы // ДАН. 2013.Т. 449. № 6. С.657-660. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Topologicheskij metod resheniya granichnyh zadach i blochnye ehlementy [Topological method for solving boundary value problems and block elements]. Doklady akademii nauk [Rep. of the Academy of Sciences], 2013, vol. 449, no. 6, pp. 657-660. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М., Горшкова Е.М., Зарецкая М.В., Мухин А.С., Павлова А.В. О конвергентных свойствах блочных элементов // ДАН. 2015. Т. 465. № 3. С. 298-301 [Babeshko V.A., Evdokimova O.V., Babeshko O.M., Gorshkova E.M., Zareckaya M.V., Muhin A.S., Pavlova A.V. O konvergentnyh svojstvah blochnyh ehlementov [Convergence properties of block elements]. Doklady Akademii nauk [Rep. of the Academy of Sciences], 2015, vol. 465, no. 3, pp. 298-301. (In Russian)]
- Бабешко В.А., Евдокимова О.В., Бабешко О.М. Блочные элементы с цилиндрической границей в макро- и наноструктурах // ДАН. 2011. Т. 440. № 6. С. 756-759. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. Blochnye ehlementy s cilindricheskoj granicej v makro- i nanostrukturah [Block elements with a cylindrical boundary in macro- and nanostructures]. Doklady akademii nauk [Rep. of the Academy of Sciences], 2011, vol. 440, no. 6, pp. 756-759. (In Russian)]
- Babeshko V.A., Evdokimova O.V., Babeshko O.M. The theory of the starting earthquake // Экологический вестник научных центров Черноморского экономического сотрудничества. 2016. № 1. Т. 2. С. 37-80.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2017 Зарецкая М.В., Бабешко О.М., Зарецкий А.Г., Лозовой В.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.